메뉴 건너뛰기




Volumn 9, Issue JUNE, 2015, Pages

Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning

Author keywords

Alzheimer's disease; Eigenbrain; Machine learning; Machine vision; Magnetic resonance imaging; Particle swarm optimization; Support vector machine; Welch's t test

Indexed keywords

BRAIN; BRAIN MAPPING; CEREBROSPINAL FLUID; COMPUTER AIDED DIAGNOSIS; COMPUTER VISION; DISEASE CONTROL; FORECASTING; IMAGE SEGMENTATION; NEURODEGENERATIVE DISEASES; PARTICLE SWARM OPTIMIZATION (PSO); RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES; VOLUMETRIC ANALYSIS;

EID: 84930681763     PISSN: None     EISSN: 16625188     Source Type: Journal    
DOI: 10.3389/fncom.2015.00066     Document Type: Article
Times cited : (248)

References (78)
  • 1
    • 84900013395 scopus 로고    scopus 로고
    • Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization
    • Aich, U., and Banerjee, S. (2014). Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization. Appl. Math. Model. 38, 2800–2818. doi: 10.1016/j.apm.2013.10.073
    • (2014) Appl. Math. Model , vol.38 , pp. 2800-2818
    • Aich, U.1    Banerjee, S.2
  • 4
    • 84885167624 scopus 로고    scopus 로고
    • Classification models for Alzheimer's disease Detection,in
    • eds L. Iliadis, H. Papadopoulos, and C. Jayne (Berlin; Heidelberg: Springer)
    • Anagnostopoulos, C. N., Giannoukos, I., Spenger, C., Simmons, A., Mecocci, P., Soininen, H., et al. (2013). “Classification models for Alzheimer's disease Detection,” in Engineering Applications of Neural Networks, Vol. 384(Pt II), eds L. Iliadis, H. Papadopoulos, and C. Jayne (Berlin; Heidelberg: Springer), 193–202. doi: 10.1007/978-3-642-41016-1_21
    • (2013) Engineering Applications of Neural Networks , vol.384 , pp. 193-202
    • Anagnostopoulos, C.N.1    Giannoukos, I.2    Spenger, C.3    Simmons, A.4    Mecocci, P.5    Soininen, H.6
  • 5
    • 82355173220 scopus 로고    scopus 로고
    • Differential MRI analysis for quantification of low grade glioma growth
    • Angelini, E. D., Delon, J., Bah, A. B., Capelle, L., and Mandonnet, E. (2012). Differential MRI analysis for quantification of low grade glioma growth. Med. Image Anal. 16, 114–126. doi: 10.1016/j.media.2011.05.014
    • (2012) Med. Image Anal , vol.16 , pp. 114-126
    • Angelini, E.D.1    Delon, J.2    Bah, A.B.3    Capelle, L.4    Mandonnet, E.5
  • 6
    • 84881670522 scopus 로고    scopus 로고
    • Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer's disease dementia
    • Arbizu, J., Prieto, E., Martinez-Lage, P., Marti-Climent, J. M., Garcia-Granero, M., Lamet, I., et al. (2013). Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer's disease dementia. Eur. J. Nucl. Med. Mol. Imaging 40, 1394–1405. doi: 10.1007/s00259-013-2458-z
    • (2013) Eur. J. Nucl. Med. Mol. Imaging , vol.40 , pp. 1394-1405
    • Arbizu, J.1    Prieto, E.2    Martinez-Lage, P.3    Marti-Climent, J.M.4    Garcia-Granero, M.5    Lamet, I.6
  • 7
    • 84892368781 scopus 로고    scopus 로고
    • Corpus callosum shape changes in early Alzheimer's disease: An MRI study using the OASIS brain database
    • Ardekani, B. A., Bachman, A. H., Figarsky, K., and Sidtis, J. J. (2014). Corpus callosum shape changes in early Alzheimer's disease: an MRI study using the OASIS brain database. Brain Struct. Funct. 219, 343–352. doi: 10.1007/s00429-013-0503-0
    • (2014) Brain Struct. Funct , vol.219 , pp. 343-352
    • Ardekani, B.A.1    Bachman, A.H.2    Figarsky, K.3    Sidtis, J.J.4
  • 8
    • 84886256698 scopus 로고    scopus 로고
    • Sexual dimorphism in the human corpus callosum: An MRI study using the OASIS brain database
    • Ardekani, B. A., Figarsky, K., and Sidtis, J. J. (2013). Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. Cereb. Cortex 23, 2514–2520. doi: 10.1093/cercor/bhs253
    • (2013) Cereb. Cortex , vol.23 , pp. 2514-2520
    • Ardekani, B.A.1    Figarsky, K.2    Sidtis, J.J.3
  • 9
    • 84924975742 scopus 로고    scopus 로고
    • Assembly and interrogation of Alzheimer's disease genetic networks reveal novel regulators of progression
    • Aubry, S., Shin, W., Crary, J. F., Lefort, R., Qureshi, Y. H., Lefebvre, C., et al. (2015). Assembly and interrogation of Alzheimer's disease genetic networks reveal novel regulators of progression. PLoS ONE 10:25. doi: 10.1371/journal.pone.0120352
    • (2015) Plos ONE , vol.10
    • Aubry, S.1    Shin, W.2    Crary, J.F.3    Lefort, R.4    Qureshi, Y.H.5    Lefebvre, C.6
  • 10
  • 12
  • 13
    • 33745255698 scopus 로고    scopus 로고
    • Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process
    • Chaplot, S., Patnaik, L. M., and Jagannathan, N. R. (2006). Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control 1, 86–92. doi: 10.1016/j.bspc.2006.05.002
    • (2006) Control , vol.1 , pp. 86-92
    • Chaplot, S.1    Patnaik, L.M.2    Jagannathan, N.R.3
  • 14
    • 84872014473 scopus 로고    scopus 로고
    • Integrating discretization and association rule-based classification for Alzheimer's disease diagnosis
    • Chaves, R., Ramirez, J., Gorriz, J. M., and Alzheimer's Dis, N. (2013). Integrating discretization and association rule-based classification for Alzheimer's disease diagnosis. Expert Syst. Appl. 40, 1571–1578. doi: 10.1016/j.eswa.2012.09.003
    • (2013) Expert Syst. Appl , vol.40 , pp. 1571-1578
    • Chaves, R.1    Ramirez, J.2    Gorriz, J.M.3    Alzheimer's Dis, N.4
  • 15
    • 84911938055 scopus 로고    scopus 로고
    • Altered brain activation patterns under different working memory loads in patients with Type 2 diabetes
    • Chen, Y., Liu, Z., Zhang, J., Xu, K., Zhang, S., Wei, D., et al. (2014). Altered brain activation patterns under different working memory loads in patients with Type 2 diabetes. Diabetes Care 37, 3157–3163. doi: 10.2337/dc14-1683
    • (2014) Diabetes Care , vol.37 , pp. 3157-3163
    • Chen, Y.1    Liu, Z.2    Zhang, J.3    Xu, K.4    Zhang, S.5    Wei, D.6
  • 16
    • 84909645342 scopus 로고    scopus 로고
    • Early detection of Alzheimer's disease using PiB and FDG PET
    • Cohen, A. D., and Klunk, W. E. (2014). Early detection of Alzheimer's disease using PiB and FDG PET. Neurobiol. Dis. 72, 117–122. doi: 10.1016/j.nbd.2014.05.001
    • (2014) Neurobiol. Dis , vol.72 , pp. 117-122
    • Cohen, A.D.1    Klunk, W.E.2
  • 17
    • 84930664557 scopus 로고    scopus 로고
    • The potential of support vector machine as the diagnostic tool for schizophrenia: A systematic literature review of neuroimaging studies
    • Collins, M. P., and Pape, S. E. (2011). The potential of support vector machine as the diagnostic tool for schizophrenia: a systematic literature review of neuroimaging studies. Eur. Psychiatry 26, 117–122. doi: 10.1016/S0924-9338(11)73068-1
    • (2011) Eur. Psychiatry , vol.26 , pp. 117-122
    • Collins, M.P.1    Pape, S.E.2
  • 18
    • 84905218068 scopus 로고    scopus 로고
    • Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: A VBM-DARTEL study
    • Colloby, S. J., O'Brien, J. T., and Taylor, J. P. (2014). Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: A VBM-DARTEL study. Psychiatry Res. 223, 187–191. doi: 10.1016/j.pscychresns.2014.06.006
    • (2014) Psychiatry Res , vol.223 , pp. 187-191
    • Colloby, S.J.1    O'brien, J.T.2    Taylor, J.P.3
  • 19
    • 84873725415 scopus 로고    scopus 로고
    • Brain MR image classification using multiscale geometric analysis of ripplet
    • Das, S., Chowdhury, M., and Kundu, M. K. (2013). Brain MR image classification using multiscale geometric analysis of ripplet. Prog. Electromagn. Res. 137, 1–17. doi: 10.2528/PIER13010105
    • (2013) Prog. Electromagn. Res , vol.137 , pp. 1-17
    • Das, S.1    Chowdhury, M.2    Kundu, M.K.3
  • 20
    • 84902246408 scopus 로고    scopus 로고
    • Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: A semi-quantitative 7.0 T magnetic resonance imaging study
    • De Reuck, J. L., Deramecourt, V., Auger, F., Durieux, N., Cordonnier, C., Devos, D., et al. (2014). Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study. Eur. J. Neurol. 21, 1026–1031. doi: 10.1111/ene.12432
    • (2014) Eur. J. Neurol , vol.21 , pp. 1026-1031
    • De Reuck, J.L.1    Deramecourt, V.2    Auger, F.3    Durieux, N.4    Cordonnier, C.5    Devos, D.6
  • 21
    • 84878119051 scopus 로고    scopus 로고
    • Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
    • Dukart, J., Mueller, K., Barthel, H., Villringer, A., Sabri, O., Schroeter, M. L., et al. (2013). Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psychiatry Res. 212, 230–236. doi: 10.1016/j.pscychresns.2012.04.007
    • (2013) Psychiatry Res , vol.212 , pp. 230-236
    • Dukart, J.1    Mueller, K.2    Barthel, H.3    Villringer, A.4    Sabri, O.5    Schroeter, M.L.6
  • 22
    • 76549108474 scopus 로고    scopus 로고
    • Hybrid intelligent techniques for MRI brain images classification
    • El-Dahshan, E. S. A., Hosny, T., and Salem, A. B. M. (2010). Hybrid intelligent techniques for MRI brain images classification. Digit. Signal Process. 20, 433–441. doi: 10.1016/j.dsp.2009.07.002
    • (2010) Digit. Signal Process , vol.20 , pp. 433-441
    • El-Dahshan, E.1    Hosny, T.2    Salem, A.3
  • 23
    • 84899008824 scopus 로고    scopus 로고
    • Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
    • El-Dahshan, E. S. A., Mohsen, H. M., Revett, K., and Salem, A. B. M. (2014). Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41, 5526–5545. doi: 10.1016/j.eswa.2014.01.021
    • (2014) Expert Syst. Appl , vol.41 , pp. 5526-5545
    • El-Dahshan, E.1    Mohsen, H.M.2    Revett, K.3    Salem, A.4
  • 24
    • 84911006007 scopus 로고    scopus 로고
    • Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: A pilot study
    • Eliasova, I., Anderkova, L., Marecek, R., and Rektorova, I. (2014). Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: a pilot study. J. Neurol. Sci. 346, 318–322. doi: 10.1016/j.jns.2014.08.036
    • (2014) J. Neurol. Sci , vol.346 , pp. 318-322
    • Eliasova, I.1    Erkova, L.2    Marecek, R.3    Rektorova, I.4
  • 25
    • 84916608467 scopus 로고    scopus 로고
    • Structural imaging biomarkers of Alzheimer's disease: Predicting disease progression
    • Eskildsen, S. F., Coupé, P., Fonov, V. S., Pruessner, J. C., and Collins, D. L. (2015). Structural imaging biomarkers of Alzheimer's disease: predicting disease progression. Neurobiol. Aging 36(Suppl. 1), S23–S31. doi: 10.1016/j.neurobiolaging.2014.04.034
    • (2015) Neurobiol. Aging , vol.36 , pp. S23-S31
    • Eskildsen, S.F.1    Coupé, P.2    Fonov, V.S.3    Pruessner, J.C.4    Collins, D.L.5
  • 26
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • Garcia, S., Fernandez, A., Luengo, J., and Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180, 2044–2064. doi: 10.1016/j.ins.2009.12.010
    • (2010) Inf. Sci , vol.180 , pp. 2044-2064
    • Garcia, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 27
    • 84902184683 scopus 로고    scopus 로고
    • Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging
    • Goh, S., Dong, Z., Zhang, Y., DiMauro, S., and Peterson, B. S. (2014). Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatry 71, 665–671. doi: 10.1001/jamapsychiatry.2014.179
    • (2014) JAMA Psychiatry , vol.71 , pp. 665-671
    • Goh, S.1    Dong, Z.2    Zhang, Y.3    Dimauro, S.4    Peterson, B.S.5
  • 28
    • 82455210873 scopus 로고    scopus 로고
    • Combining meta-learning and search techniques to select parameters for support vector machines
    • Gomes, T. A. F., Prudêncio, R. B. C., Soares, C., Rossi, A. L. D., and Carvalho, A. (2012). Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 75, 3–13. doi: 10.1016/j.neucom.2011.07.005
    • (2012) Neurocomputing , vol.75 , pp. 3-13
    • Gomes, T.1    Prudêncio, R.2    Soares, C.3    Rossi, A.4    Carvalho, A.5
  • 29
    • 84855992916 scopus 로고    scopus 로고
    • Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease
    • Gray, K. R., Wolz, R., Heckemann, R. A., Aljabar, P., Hammers, A., Rueckert, D., et al. (2012). Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease. Neuroimage 60, 221–229. doi: 10.1016/j.neuroimage.2011.12.071
    • (2012) Neuroimage , vol.60 , pp. 221-229
    • Gray, K.R.1    Wolz, R.2    Heckemann, R.A.3    Aljabar, P.4    Hammers, A.5    Rueckert, D.6
  • 30
    • 84855784491 scopus 로고    scopus 로고
    • Asymptotic normality of support vector machine variants and other regularized kernel methods
    • Hable, R. (2012). Asymptotic normality of support vector machine variants and other regularized kernel methods. J. Multivar. Anal. 106, 92–117. doi: 10.1016/j.jmva.2011.11.004
    • (2012) J. Multivar. Anal , vol.106 , pp. 92-117
    • Hable, R.1
  • 31
    • 84878873908 scopus 로고    scopus 로고
    • Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease—Revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence
    • Hahn, K., Myers, N., Prigarin, S., Rodenacker, K., Kurz, A., Förstl, H., et al. (2013). Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease—Revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence. Neuroimage 81, 96–109. doi: 10.1016/j.neuroimage.2013.05.011
    • (2013) Neuroimage , vol.81 , pp. 96-109
    • Hahn, K.1    Myers, N.2    Prigarin, S.3    Rodenacker, K.4    Kurz, A.5    Förstl, H.6
  • 32
    • 84890068160 scopus 로고    scopus 로고
    • Respiratory motion correction in dynamic MRI using robust data decomposition registration – Application to DCE-MRI
    • Hamy, V., Dikaios, N., Punwani, S., Melbourne, A., Latifoltojar, A., Makanyanga, J., et al. (2014). Respiratory motion correction in dynamic MRI using robust data decomposition registration – Application to DCE-MRI. Med. Image Anal. 18, 301–313. doi: 10.1016/j.media.2013.10.016
    • (2014) Med. Image Anal , vol.18 , pp. 301-313
    • Hamy, V.1    Dikaios, N.2    Punwani, S.3    Melbourne, A.4    Latifoltojar, A.5    Makanyanga, J.6
  • 33
    • 84930684167 scopus 로고    scopus 로고
    • 327 Diagnostic Stability of Mild Cognitive Impairment Subtype
    • Han, J. W., Kim, T. H., Lee, S. B., Park, J. H., Lee, J. J., Huh, Y., et al. (2011). 327 Diagnostic Stability of Mild Cognitive Impairment Subtype. Asian J. Psychiatry 4(Suppl. 1), S65–S66. doi: 10.1016/s1876-2018(11)60250-5
    • (2011) Asian J. Psychiatry , vol.4 , pp. S65-S66
    • Han, J.W.1    Kim, T.H.2    Lee, S.B.3    Park, J.H.4    Lee, J.J.5    Huh, Y.6
  • 34
    • 84922073672 scopus 로고    scopus 로고
    • Meta-analytic comparison between PIB-PET and FDG-PET results in Alzheimer's disease and MCI
    • He, W., Liu, D., Radua, J., Li, G., Han, B., and Sun, Z. (2015). Meta-analytic comparison between PIB-PET and FDG-PET results in Alzheimer's disease and MCI. Cell Biochem. Biophys. 71, 17–26. doi: 10.1007/s12013-014-0138-7
    • (2015) Cell Biochem. Biophys , vol.71 , pp. 17-26
    • He, W.1    Liu, D.2    Radua, J.3    Li, G.4    Han, B.5    Sun, Z.6
  • 35
    • 84902957921 scopus 로고    scopus 로고
    • Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI
    • Jeurissen, B., Leemans, A., and Sijbers, J. (2014). Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI. Med. Image Anal. 18, 953–962. doi: 10.1016/j.media.2014.05.012
    • (2014) Med. Image Anal , vol.18 , pp. 953-962
    • Jeurissen, B.1    Leemans, A.2    Sijbers, J.3
  • 36
    • 84884870289 scopus 로고    scopus 로고
    • Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series
    • Kalbkhani, H., Shayesteh, M. G., and Zali-Vargahan, B. (2013). Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomed. Signal Process. Control 8, 909–919. doi: 10.1016/j.bspc.2013.09.001
    • (2013) Biomed. Signal Process. Control , vol.8 , pp. 909-919
    • Kalbkhani, H.1    Shayesteh, M.G.2    Zali-Vargahan, B.3
  • 37
    • 84887436041 scopus 로고    scopus 로고
    • Idiopathic normal-pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test
    • Kang, K., Yoon, U., Lee, J. M., and Lee, H. W. (2013). Idiopathic normal-pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test. J. Neurol. Sci. 334, 55–62. doi: 10.1016/j.jns.2013.07.014
    • (2013) J. Neurol. Sci , vol.334 , pp. 55-62
    • Kang, K.1    Yoon, U.2    Lee, J.M.3    Lee, H.W.4
  • 38
    • 84897961792 scopus 로고    scopus 로고
    • ECG beat classification using particle swarm optimization and support vector machine
    • Khazaee, A., and Zadeh, A. E. (2014). ECG beat classification using particle swarm optimization and support vector machine. Front. Comput. Sci. 8, 217–231. doi: 10.1007/s11704-014-2398-1
    • (2014) Front. Comput. Sci , vol.8 , pp. 217-231
    • Khazaee, A.1    Zadeh, A.E.2
  • 39
    • 84866977560 scopus 로고    scopus 로고
    • Clinical implications of quantitative electroencephalography and current source density in patients with Alzheimer's disease
    • Kim, J. S., Lee, S. H., Park, G., Kim, S., Bae, S. M., Kim, D. W., et al. (2012). Clinical implications of quantitative electroencephalography and current source density in patients with Alzheimer's disease. Brain Topogr. 25, 461–474. doi: 10.1007/s10548-012-0234-1
    • (2012) Brain Topogr , vol.25 , pp. 461-474
    • Kim, J.S.1    Lee, S.H.2    Park, G.3    Kim, S.4    Bae, S.M.5    Kim, D.W.6
  • 40
    • 33744929139 scopus 로고    scopus 로고
    • A region-of-interest (ROI) template for three-dimensional stereotactic surface projection (3D-SSP) images: Initial application to analysis of Alzheimer disease and mild cognitive impairment
    • Kubota, T., Ushijima, Y., and Nishimura, T. (2006). A region-of-interest (ROI) template for three-dimensional stereotactic surface projection (3D-SSP) images: initial application to analysis of Alzheimer disease and mild cognitive impairment. Int. Congr. Ser. 1290, 128–134. doi: 10.1016/j.ics.2005.11.104
    • (2006) Int. Congr. Ser , vol.1290 , pp. 128-134
    • Kubota, T.1    Ushijima, Y.2    Nishimura, T.3
  • 41
    • 84883651842 scopus 로고    scopus 로고
    • Classification of diffusion tensor images for the early detection of Alzheimer's disease
    • Lee, W., Park, B., and Han, K. (2013). Classification of diffusion tensor images for the early detection of Alzheimer's disease. Comput. Biol. Med. 43, 1313–1320. doi: 10.1016/j.compbiomed.2013.07.004
    • (2013) Comput. Biol. Med , vol.43 , pp. 1313-1320
    • Lee, W.1    Park, B.2    Han, K.3
  • 42
    • 84874878881 scopus 로고    scopus 로고
    • Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease
    • Lehmann, M., Ghosh, P. M., Madison, C., Laforce, R., Corbetta-Rastelli, C., Weiner, M. W., et al. (2013). Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease. Brain 136, 844–858. doi: 10.1093/brain/aws327
    • (2013) Brain , vol.136 , pp. 844-858
    • Lehmann, M.1    Ghosh, P.M.2    Madison, C.3    Laforce, R.4    Corbetta-Rastelli, C.5    Weiner, M.W.6
  • 43
    • 78049254875 scopus 로고    scopus 로고
    • Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine
    • Li, D., Yang, W., and Wang, S. (2010). Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine. Comput. Electron. Agric. 74, 274–279. doi: 10.1016/j.compag.2010.09.002
    • (2010) Comput. Electron. Agric , vol.74 , pp. 274-279
    • Li, D.1    Yang, W.2    Wang, S.3
  • 44
    • 84900841488 scopus 로고    scopus 로고
    • Multiple kernel learning in the primal for multimodal Alzheimer's disease classification
    • Liu, F. Y., Zhou, L. P., Shen, C. H., and Yin, J. P. (2014). Multiple kernel learning in the primal for multimodal Alzheimer's disease classification. IEEE J. Biomed. Health Inform. 18, 984–990. doi: 10.1109/JBHI.2013.2285378
    • (2014) IEEE J. Biomed. Health Inform , vol.18 , pp. 984-990
    • Liu, F.Y.1    Zhou, L.P.2    Shen, C.H.3    Yin, J.P.4
  • 45
    • 68749104990 scopus 로고    scopus 로고
    • Automatic system for Alzheimer's disease diagnosis using eigenbrains and bayesian classification rules
    • eds J. Cabestany, A. Prieto, F. Sandoval, and J. M. Corchado (Berlin: Springer-Verlag Berlin
    • Lopez, M., Ramirez, J., Gorriz, J. M., Alvarez, I., Salas-Gonzalez, D., Segovia, F., et al. (2009). “Automatic system for Alzheimer's disease diagnosis using eigenbrains and bayesian classification rules,” Bio-Inspired Systems: Computational and Ambient Intelligence, Vol. 5517, eds J. Cabestany, A. Prieto, F. Sandoval, and J. M. Corchado (Berlin: Springer-Verlag Berlin), 949–956.
    • (2009) Bio-Inspired Systems: Computational and Ambient Intelligence , vol.5517 , pp. 949-956
    • Lopez, M.1    Ramirez, J.2    Gorriz, J.M.3    Alvarez, I.4    Salas-Gonzalez, D.5    Segovia, F.6
  • 46
    • 33847043225 scopus 로고    scopus 로고
    • A Slantlet transform based intelligent system for magnetic resonance brain image classification
    • Maitra, M., and Chatterjee, A. (2006). A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomed. Signal Process. Control 1, 299–306. doi: 10.1016/j.bspc.2006.12.001
    • (2006) Biomed. Signal Process. Control , vol.1 , pp. 299-306
    • Maitra, M.1    Chatterjee, A.2
  • 47
    • 34548409688 scopus 로고    scopus 로고
    • Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    • Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., and Buckner, R. L. (2007). Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19, 1498–1507. doi: 10.1162/jocn.2007.19.9.1498
    • (2007) J. Cogn. Neurosci , vol.19 , pp. 1498-1507
    • Marcus, D.S.1    Wang, T.H.2    Parker, J.3    Csernansky, J.G.4    Morris, J.C.5    Buckner, R.L.6
  • 49
    • 84921470387 scopus 로고    scopus 로고
    • More atrophy of deep gray matter structures in frontotemporal dementia compared to Alzheimer's disease
    • Möller, C., Dieleman, N., van der Flier, W. M., Versteeg, A., Pijnenburg, Y., Scheltens, P., et al. (2015). More atrophy of deep gray matter structures in frontotemporal dementia compared to Alzheimer's disease. J. Alzheimers Dis. 44, 635–647. doi: 10.3233/JAD-141230
    • (2015) J. Alzheimers Dis , vol.44 , pp. 635-647
    • Möller, C.1    Dieleman, N.2    Van Der Flier, W.M.3    Versteeg, A.4    Pijnenburg, Y.5    Scheltens, P.6
  • 50
    • 84880350447 scopus 로고    scopus 로고
    • Left ventricle segmentation in MRI via convex relaxed distribution matching
    • Nambakhsh, C. M. S., Yuan, J., Punithakumar, K., Goela, A., Rajchl, M., Peters, T. M., et al. (2013). Left ventricle segmentation in MRI via convex relaxed distribution matching. Med. Image Anal. 17, 1010–1024. doi: 10.1016/j.media.2013.05.002
    • (2013) Med. Image Anal , vol.17 , pp. 1010-1024
    • Nambakhsh, C.1    Yuan, J.2    Punithakumar, K.3    Goela, A.4    Rajchl, M.5    Peters, T.M.6
  • 51
    • 77549084553 scopus 로고    scopus 로고
    • Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders
    • Paakki, J. J., Rahko, J., Long, X., Moilanen, I., Tervonen, O., Nikkinen, J., et al. (2010). Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res. 1321, 169–179. doi: 10.1016/j.brainres.2009.12.081
    • (2010) Brain Res , vol.1321 , pp. 169-179
    • Paakki, J.J.1    Rahko, J.2    Long, X.3    Moilanen, I.4    Tervonen, O.5    Nikkinen, J.6
  • 52
  • 53
    • 75249106883 scopus 로고    scopus 로고
    • Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease
    • Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J., et al. (2010). Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. Neuroimage 50, 162–174. doi: 10.1016/j.neuroimage.2009.11.046
    • (2010) Neuroimage , vol.50 , pp. 162-174
    • Plant, C.1    Teipel, S.J.2    Oswald, A.3    Böhm, C.4    Meindl, T.5    Mourao-Miranda, J.6
  • 55
    • 79960338927 scopus 로고    scopus 로고
    • Brain tissue classification of MR images using fast fourier transform based expectation- maximization gaussian mixture model
    • D. C. Wyld, M. Wozniak, N. Chaki, N. Meghanathan, and D. Nagamalai (Berlin, Springer-Verlag Berlin
    • Ramasamy, R., and Anandhakumar, P. (2011). “Brain tissue classification of MR images using fast fourier transform based expectation- maximization gaussian mixture model,” in Advances in Computing and Information Technology, Vol. 198, D. C. Wyld, M. Wozniak, N. Chaki, N. Meghanathan, and D. Nagamalai (Berlin, Springer-Verlag Berlin), 387–398.
    • (2011) Advances in Computing and Information Technology , vol.198 , pp. 387-398
    • Ramasamy, R.1    Anandhakumar, P.2
  • 57
    • 84884575083 scopus 로고    scopus 로고
    • Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
    • Saritha, M., Joseph, K. P., and Mathew, A. T. (2013). Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit. Lett. 34, 2151–2156. doi: 10.1016/j.patrec.2013.08.017
    • (2013) Pattern Recognit. Lett , vol.34 , pp. 2151-2156
    • Saritha, M.1    Joseph, K.P.2    Mathew, A.T.3
  • 58
    • 84872022060 scopus 로고    scopus 로고
    • Deformation based feature selection for computer aided diagnosis of Alzheimer's Disease
    • Savio, A., and Grana, M. (2013). Deformation based feature selection for computer aided diagnosis of Alzheimer's Disease. Expert Syst. Appl. 40, 1619–1628. doi: 10.1016/j.eswa.2012.09.009
    • (2013) Expert Syst. Appl , vol.40 , pp. 1619-1628
    • Savio, A.1    Grana, M.2
  • 59
    • 84948435359 scopus 로고    scopus 로고
    • Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer's disease
    • [Epub ahead of print]
    • Schultz, S. A., Larson, J., Oh, J., Koscik, R., Dowling, M. N., Gallagher, C. L., et al. (2014). Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer's disease. Brain Imaging Behav. doi: 10.1007/s11682-014-9329-5. [Epub ahead of print].
    • (2014) Brain Imaging Behav
    • Schultz, S.A.1    Larson, J.2    Oh, J.3    Koscik, R.4    Dowling, M.N.5    Gallagher, C.L.6
  • 60
    • 84892620757 scopus 로고    scopus 로고
    • Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease
    • Shamonin, D. P., Bron, E. E., Lelieveldt, B. P. F., Smits, M., Klein, S., and Staring, M. (2014). Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease. Front. Neuroinform. 7:50. doi: 10.3389/fninf.2013.00050
    • (2014) Front. Neuroinform , vol.7
    • Shamonin, D.P.1    Bron, E.E.2    Lelieveldt, B.3    Smits, M.4    Klein, S.5    Staring, M.6
  • 61
    • 84899835214 scopus 로고    scopus 로고
    • Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease
    • Shinohara, M., Fujioka, S., Murray, M. E., Wojtas, A., Baker, M., Rovelet-Lecrux, A., et al. (2014). Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease. Brain 137, 1533–1549. doi: 10.1093/brain/awu046
    • (2014) Brain , vol.137 , pp. 1533-1549
    • Shinohara, M.1    Fujioka, S.2    Murray, M.E.3    Wojtas, A.4    Baker, M.5    Rovelet-Lecrux, A.6
  • 64
    • 84949115956 scopus 로고    scopus 로고
    • The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease
    • Voevodskaya, O., Simmons, A., Nordenskjold, R., Kullberg, J., Ahlstrom, H., Lind, L., et al. (2014). The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease. Front. Aging Neurosci. 6:264. doi: 10.3389/fnagi.2014.00264
    • (2014) Front. Aging Neurosci , vol.6
    • Voevodskaya, O.1    Simmons, A.2    Nordenskjold, R.3    Kullberg, J.4    Ahlstrom, H.5    Lind, L.6
  • 65
    • 84888250866 scopus 로고    scopus 로고
    • Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer's disease
    • Wang, Z., Xia, M., Dai, Z., Liang, X., Song, H., He, Y., et al. (2015). Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer's disease. Brain Struct. Funct. 220, 745–762. doi: 10.1007/s00429-013-0681-9
    • (2015) Brain Struct. Funct , vol.220 , pp. 745-762
    • Wang, Z.1    Xia, M.2    Dai, Z.3    Liang, X.4    Song, H.5    He, Y.6
  • 66
    • 84873408238 scopus 로고    scopus 로고
    • Progression of Alzheimer's disease as measured by clinical dementia rating sum of boxes scores
    • Williams, M. M., Storandt, M., Roe, C. M., and Morris, J. C. (2013). Progression of Alzheimer's disease as measured by clinical dementia rating sum of boxes scores. Alzheimers Dement. 9(1, Suppl.), S39-S44. doi: 10.1016/j.jalz.2012.01.005
    • (2013) Alzheimers Dement , vol.9 , Issue.1 , pp. S39-S44
    • Williams, M.M.1    Storandt, M.2    Roe, C.M.3    Morris, J.C.4
  • 67
    • 80053389523 scopus 로고    scopus 로고
    • ICA-based classification of MCI vs HC. Natural Computation (ICNC)
    • Shanghai: IEEE
    • Xinyun, C., Wenlu, Y., and Xudong, H. (2011). “ICA-based classification of MCI vs HC. Natural Computation (ICNC),” Seventh International Conference, Vol. 3 (Shanghai: IEEE), 1658–1662. doi: 10.1109/ICNC.2011.6022275
    • (2011) Seventh International Conference , vol.3 , pp. 1658-1662
    • Xinyun, C.1    Wenlu, Y.2    Xudong, H.3
  • 68
    • 84905910095 scopus 로고    scopus 로고
    • Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM
    • Xue, Z. H., Du, P. J., and Su, H. J. (2014). Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM. J. Select. Topics Appl. Earth Obs. Remote Sens IEEE 7, 2131–2146. doi: 10.1109/JSTARS.2014.2307091
    • (2014) J. Select. Topics Appl. Earth Obs. Remote Sens IEEE , vol.7 , pp. 2131-2146
    • Xue, Z.H.1    Du, P.J.2    Su, H.J.3
  • 69
    • 84928688048 scopus 로고    scopus 로고
    • Automated classification of brain images using wavelet-energy and biogeography-based optimization
    • Yang, G., Zhang, Y., Yang, J., Ji, G., Dong, Z., Wang, S., et al. (2015). Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed. Tools Appl. 1–17. doi: 10.1007/s11042-015-2649-7
    • (2015) Multimed. Tools Appl , pp. 1-17
    • Yang, G.1    Zhang, Y.2    Yang, J.3    Ji, G.4    Dong, Z.5    Wang, S.6
  • 70
    • 84906214112 scopus 로고    scopus 로고
    • Microstructure, length, and connection of limbic tracts in normal human brain development
    • Yu, Q., Peng, Y., Mishra, V., Ouyang, A., Li, H., Zhang, H., et al. (2014). Microstructure, length, and connection of limbic tracts in normal human brain development. Front. Aging Neurosci. 6:228. doi: 10.3389/fnagi.2014.00228
    • (2014) Front. Aging Neurosci , vol.6
    • Yu, Q.1    Peng, Y.2    Mishra, V.3    Ouyang, A.4    Li, H.5    Zhang, H.6
  • 71
    • 84930332968 scopus 로고    scopus 로고
    • Preclinical Diagnosis of Magnetic Resonance (MR) Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM)
    • Zhang, Y., Dong, Z., Wang, S., Ji, G., and Yang, J. (2015a). Preclinical Diagnosis of Magnetic Resonance (MR) Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM). Entropy 17, 1795–1813. doi: 10.3390/e170a41795
    • (2015) Entropy , vol.17 , pp. 1795-1813
    • Zhang, Y.1    Dong, Z.2    Wang, S.3    Ji, G.4    Yang, J.5
  • 72
    • 79953706565 scopus 로고    scopus 로고
    • A hybrid method for MRI brain image classification
    • Zhang, Y., Dong, Z., Wu, L., and Wang, S. (2011). A hybrid method for MRI brain image classification. Expert Syst. Appl. 38, 10049–10053. doi: 10.1016/j.eswa.2011.02.012
    • (2011) Expert Syst. Appl , vol.38 , pp. 10049-10053
    • Zhang, Y.1    Dong, Z.2    Wu, L.3    Wang, S.4
  • 73
    • 84892614873 scopus 로고    scopus 로고
    • Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree
    • Zhang, Y., Wang, S., and Dong, Z. (2014). Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagn. Res. 144, 171–184. doi: 10.2528/PIER13121310
    • (2014) Prog. Electromagn. Res , vol.144 , pp. 171-184
    • Zhang, Y.1    Wang, S.2    Dong, Z.3
  • 74
    • 84885597453 scopus 로고    scopus 로고
    • An MR brain images classifier system via particle swarm optimization and kernel support vector machine
    • Zhang, Y., Wang, S., Ji, G., and Dong, Z. (2013). An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Scientific World Journal 2013:130134. doi: 10.1155/2013/130134
    • (2013) Scientific World Journal , vol.2013
    • Zhang, Y.1    Wang, S.2    Ji, G.3    Dong, Z.4
  • 75
    • 84919414956 scopus 로고    scopus 로고
    • Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging
    • Zhang, Y., Wang, S., Ji, G., and Dong, Z. (2015b). Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging. IEEJ Trans. Electr. Electron. Eng. 10, 116–117. doi: 10.1002/tee.22059
    • (2015) IEEJ Trans. Electr. Electron. Eng , vol.10 , pp. 116-117
    • Zhang, Y.1    Wang, S.2    Ji, G.3    Dong, Z.4
  • 76
    • 84866975208 scopus 로고    scopus 로고
    • Classification of fruits using computer vision and a multiclass support vector machine
    • Zhang, Y., and Wu, L. (2012a). Classification of fruits using computer vision and a multiclass support vector machine. Sensors 12, 12489–12505. doi: 10.3390/s120912489
    • (2012) Sensors , vol.12 , pp. 12489-12505
    • Zhang, Y.1    Wu, L.2
  • 77
    • 84866525215 scopus 로고    scopus 로고
    • An MR brain images classifier via principal component analysis and kernel support vector machine
    • Zhang, Y., and Wu, L. (2012b). An MR brain images classifier via principal component analysis and kernel support vector machine. Prog. Electromagn. Res. 130, 369–388. doi: 10.2528/PIER12061410
    • (2012) Prog. Electromagn. Res , vol.130 , pp. 369-388
    • Zhang, Y.1    Wu, L.2
  • 78
    • 84944456448 scopus 로고    scopus 로고
    • Detection of pathological brain in MRI scanning based on wavelet-entropy and naive bayes classifier
    • in, eds F. Ortuño and I. Rojas (Granada: Springer International Publishing)
    • Zhou, X., Wang, S., Xu, W., Ji, G., Phillips, P., Sun, P., et al. (2015). “Detection of pathological brain in MRI scanning based on wavelet-entropy and naive bayes classifier,” in Bioinformatics and Biomedical Engineering, Vol. 9043, eds F. Ortuño and I. Rojas (Granada: Springer International Publishing), 201–209. doi: 10.1007/978-3-319-16483-0_20
    • (2015) Bioinformatics and Biomedical Engineering , vol.9043 , pp. 201-209
    • Zhou, X.1    Wang, S.2    Xu, W.3    Ji, G.4    Phillips, P.5    Sun, P.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.