메뉴 건너뛰기




Volumn 143, Issue , 2014, Pages 294-301

Non-parallel support vector classifiers with different loss functions

Author keywords

Hinge loss; Kernel trick; Least squares loss; Non parallel classifiers; Pinball loss

Indexed keywords

EIGENVALUES AND EIGENFUNCTIONS;

EID: 84904806309     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.063     Document Type: Article
Times cited : (43)

References (30)
  • 4
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 5
    • 33644830072 scopus 로고    scopus 로고
    • Multisurface proximal support vector machine classification via generalized eigenvalues
    • Mangasarian O.L., Wild E.W. Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28(1):69-74.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.1 , pp. 69-74
    • Mangasarian, O.L.1    Wild, E.W.2
  • 6
    • 84881257396 scopus 로고    scopus 로고
    • Twin least squares support vector regression
    • Zhao Y.-P., Zhao J., Zhao M. Twin least squares support vector regression. Neurocomputing 2013, 118:225-236.
    • (2013) Neurocomputing , vol.118 , pp. 225-236
    • Zhao, Y.-P.1    Zhao, J.2    Zhao, M.3
  • 7
    • 83955162266 scopus 로고    scopus 로고
    • Efficient twin parametric insensitive support vector regression model
    • Peng X. Efficient twin parametric insensitive support vector regression model. Neurocomputing 2012, 79:26-38.
    • (2012) Neurocomputing , vol.79 , pp. 26-38
    • Peng, X.1
  • 8
    • 84867864172 scopus 로고    scopus 로고
    • Bi-density twin support vector machines for pattern recognition
    • Peng X., Xu D. Bi-density twin support vector machines for pattern recognition. Neurocomputing 2013, 99:134-143.
    • (2013) Neurocomputing , vol.99 , pp. 134-143
    • Peng, X.1    Xu, D.2
  • 9
    • 84898741649 scopus 로고    scopus 로고
    • The best separating decision tree twin support vector machine for multi-class classification
    • Shao Y., Chen W., Huang W., Yang Z., Deng N. The best separating decision tree twin support vector machine for multi-class classification. Procedia Comput. Sci. 2013, 17:1032-1038.
    • (2013) Procedia Comput. Sci. , vol.17 , pp. 1032-1038
    • Shao, Y.1    Chen, W.2    Huang, W.3    Yang, Z.4    Deng, N.5
  • 10
    • 84857059738 scopus 로고    scopus 로고
    • Least squares recursive projection twin support vector machine for classification
    • Shao Y., Deng N., Yang Z. Least squares recursive projection twin support vector machine for classification. Pattern Recognit. 2012, 45(6):2299-2307.
    • (2012) Pattern Recognit. , vol.45 , Issue.6 , pp. 2299-2307
    • Shao, Y.1    Deng, N.2    Yang, Z.3
  • 11
    • 84898729332 scopus 로고    scopus 로고
    • Feature selection based on linear twin support vector machines
    • Yang Z., He J., Shao Y. Feature selection based on linear twin support vector machines. Procedia Comput. Sci. 2013, 17:1039-1046.
    • (2013) Procedia Comput. Sci. , vol.17 , pp. 1039-1046
    • Yang, Z.1    He, J.2    Shao, Y.3
  • 12
    • 34047225880 scopus 로고    scopus 로고
    • Twin support vector machines for pattern classification
    • Jayadeva, Khemchandani R., Chandra S. Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29(5):905-910.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.5 , pp. 905-910
    • Jayadeva, K.R.1    Chandra, S.2
  • 13
  • 15
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Kumar M., Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 2009, 36(4):7535-7543.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7535-7543
    • Kumar, M.1    Gopal, M.2
  • 17
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan R.E., Chen P.H., Lin C.J. Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 2005, 6:1889-1918.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 18
    • 84925105967 scopus 로고    scopus 로고
    • Cambridge University Press, New York
    • Koenker R. Quantile Regression 2005, Cambridge University Press, New York.
    • (2005) Quantile Regression
    • Koenker, R.1
  • 20
    • 79951667862 scopus 로고    scopus 로고
    • Estimating conditional quantiles with the help of the pinball loss
    • Steinwart I., Christmann A. Estimating conditional quantiles with the help of the pinball loss. Bernoulli 2011, 17(1):211-225.
    • (2011) Bernoulli , vol.17 , Issue.1 , pp. 211-225
    • Steinwart, I.1    Christmann, A.2
  • 22
    • 84904813101 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 23
    • 80955130702 scopus 로고    scopus 로고
    • Using sequential unconstrained minimization techniques to simplify SVM solvers
    • Joshi S., Ramakrishnan G., Chandra S. Using sequential unconstrained minimization techniques to simplify SVM solvers. Neurocomputing 2012, 77(1):253-260.
    • (2012) Neurocomputing , vol.77 , Issue.1 , pp. 253-260
    • Joshi, S.1    Ramakrishnan, G.2    Chandra, S.3
  • 25
    • 77952542640 scopus 로고    scopus 로고
    • Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm
    • Li S., Tan M. Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm. Neurocomputing 2010, 73:2089-2096.
    • (2010) Neurocomputing , vol.73 , pp. 2089-2096
    • Li, S.1    Tan, M.2
  • 26
    • 84878941786 scopus 로고    scopus 로고
    • A PSO and pattern search based memetic algorithm for SVMs parameters optimization
    • Bao Y., Hu Z., Xiong T. A PSO and pattern search based memetic algorithm for SVMs parameters optimization. Neurocomputing 2013, 117:98-106.
    • (2013) Neurocomputing , vol.117 , pp. 98-106
    • Bao, Y.1    Hu, Z.2    Xiong, T.3
  • 27
    • 84878111771 scopus 로고    scopus 로고
    • New one-versus-all ν-SVM solving intra-inter class imbalance with extended manifold regularization and localized relative maximum margin
    • Wang X., Niu Y. New one-versus-all ν-SVM solving intra-inter class imbalance with extended manifold regularization and localized relative maximum margin. Neurocomputing 2013, 115:106-121.
    • (2013) Neurocomputing , vol.115 , pp. 106-121
    • Wang, X.1    Niu, Y.2
  • 28
    • 84893774796 scopus 로고    scopus 로고
    • Multi-step-ahead time series prediction using multiple-output support vector regression
    • Bao Y., Xiong T., Hu Z. Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing 2014, 129:482-493.
    • (2014) Neurocomputing , vol.129 , pp. 482-493
    • Bao, Y.1    Xiong, T.2    Hu, Z.3
  • 29
    • 84888287824 scopus 로고    scopus 로고
    • Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
    • Xiong T., Bao Y., Hu Z. Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowl.-Based Syst. 2014, 55:87-100.
    • (2014) Knowl.-Based Syst. , vol.55 , pp. 87-100
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 30
    • 84885867678 scopus 로고    scopus 로고
    • Does restraining end effect matter in EMD-based modeling framework for time series prediction? Some experimental evidences
    • Xiong T., Bao Y., Hu Z. Does restraining end effect matter in EMD-based modeling framework for time series prediction? Some experimental evidences. Neurocomputing 2014, 123:174-184.
    • (2014) Neurocomputing , vol.123 , pp. 174-184
    • Xiong, T.1    Bao, Y.2    Hu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.