-
3
-
-
0037695279
-
Least Squares Support Vector Machines, World Scientific, Signapore
-
J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines, World Scientific, Signapore, 2002.
-
(2002)
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
4
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
5
-
-
33644830072
-
Multisurface proximal support vector machine classification via generalized eigenvalues
-
Mangasarian O.L., Wild E.W. Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28(1):69-74.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.1
, pp. 69-74
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
6
-
-
84881257396
-
Twin least squares support vector regression
-
Zhao Y.-P., Zhao J., Zhao M. Twin least squares support vector regression. Neurocomputing 2013, 118:225-236.
-
(2013)
Neurocomputing
, vol.118
, pp. 225-236
-
-
Zhao, Y.-P.1
Zhao, J.2
Zhao, M.3
-
7
-
-
83955162266
-
Efficient twin parametric insensitive support vector regression model
-
Peng X. Efficient twin parametric insensitive support vector regression model. Neurocomputing 2012, 79:26-38.
-
(2012)
Neurocomputing
, vol.79
, pp. 26-38
-
-
Peng, X.1
-
8
-
-
84867864172
-
Bi-density twin support vector machines for pattern recognition
-
Peng X., Xu D. Bi-density twin support vector machines for pattern recognition. Neurocomputing 2013, 99:134-143.
-
(2013)
Neurocomputing
, vol.99
, pp. 134-143
-
-
Peng, X.1
Xu, D.2
-
9
-
-
84898741649
-
The best separating decision tree twin support vector machine for multi-class classification
-
Shao Y., Chen W., Huang W., Yang Z., Deng N. The best separating decision tree twin support vector machine for multi-class classification. Procedia Comput. Sci. 2013, 17:1032-1038.
-
(2013)
Procedia Comput. Sci.
, vol.17
, pp. 1032-1038
-
-
Shao, Y.1
Chen, W.2
Huang, W.3
Yang, Z.4
Deng, N.5
-
10
-
-
84857059738
-
Least squares recursive projection twin support vector machine for classification
-
Shao Y., Deng N., Yang Z. Least squares recursive projection twin support vector machine for classification. Pattern Recognit. 2012, 45(6):2299-2307.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.6
, pp. 2299-2307
-
-
Shao, Y.1
Deng, N.2
Yang, Z.3
-
11
-
-
84898729332
-
Feature selection based on linear twin support vector machines
-
Yang Z., He J., Shao Y. Feature selection based on linear twin support vector machines. Procedia Comput. Sci. 2013, 17:1039-1046.
-
(2013)
Procedia Comput. Sci.
, vol.17
, pp. 1039-1046
-
-
Yang, Z.1
He, J.2
Shao, Y.3
-
12
-
-
34047225880
-
Twin support vector machines for pattern classification
-
Jayadeva, Khemchandani R., Chandra S. Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29(5):905-910.
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.5
, pp. 905-910
-
-
Jayadeva, K.R.1
Chandra, S.2
-
13
-
-
79957988400
-
Improvements on twin support vector machines
-
Shao Y., Zhang C., Wang X., Deng N. Improvements on twin support vector machines. IEEE Trans. Neural Netw. 2011, 22(6):962-968.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.6
, pp. 962-968
-
-
Shao, Y.1
Zhang, C.2
Wang, X.3
Deng, N.4
-
15
-
-
60249095678
-
Least squares twin support vector machines for pattern classification
-
Kumar M., Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 2009, 36(4):7535-7543.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.4
, pp. 7535-7543
-
-
Kumar, M.1
Gopal, M.2
-
16
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, Massachusetts, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, Massachusetts
, pp. 185-208
-
-
Platt, J.C.1
-
17
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
Fan R.E., Chen P.H., Lin C.J. Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 2005, 6:1889-1918.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1889-1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
18
-
-
84925105967
-
-
Cambridge University Press, New York
-
Koenker R. Quantile Regression 2005, Cambridge University Press, New York.
-
(2005)
Quantile Regression
-
-
Koenker, R.1
-
20
-
-
79951667862
-
Estimating conditional quantiles with the help of the pinball loss
-
Steinwart I., Christmann A. Estimating conditional quantiles with the help of the pinball loss. Bernoulli 2011, 17(1):211-225.
-
(2011)
Bernoulli
, vol.17
, Issue.1
, pp. 211-225
-
-
Steinwart, I.1
Christmann, A.2
-
22
-
-
84904813101
-
-
UCI Machine Learning Repository
-
A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010.
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
23
-
-
80955130702
-
Using sequential unconstrained minimization techniques to simplify SVM solvers
-
Joshi S., Ramakrishnan G., Chandra S. Using sequential unconstrained minimization techniques to simplify SVM solvers. Neurocomputing 2012, 77(1):253-260.
-
(2012)
Neurocomputing
, vol.77
, Issue.1
, pp. 253-260
-
-
Joshi, S.1
Ramakrishnan, G.2
Chandra, S.3
-
24
-
-
77949773681
-
Coupled simulated annealing
-
Xavier de Souza S., Suykens J.A.K., Vandewalle J., Bollé D. Coupled simulated annealing. IEEE Trans. Syst. Man Cybern. Part B 2010, 40(2):320-335.
-
(2010)
IEEE Trans. Syst. Man Cybern. Part B
, vol.40
, Issue.2
, pp. 320-335
-
-
Xavier de Souza, S.1
Suykens, J.A.K.2
Vandewalle, J.3
Bollé, D.4
-
25
-
-
77952542640
-
Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm
-
Li S., Tan M. Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm. Neurocomputing 2010, 73:2089-2096.
-
(2010)
Neurocomputing
, vol.73
, pp. 2089-2096
-
-
Li, S.1
Tan, M.2
-
26
-
-
84878941786
-
A PSO and pattern search based memetic algorithm for SVMs parameters optimization
-
Bao Y., Hu Z., Xiong T. A PSO and pattern search based memetic algorithm for SVMs parameters optimization. Neurocomputing 2013, 117:98-106.
-
(2013)
Neurocomputing
, vol.117
, pp. 98-106
-
-
Bao, Y.1
Hu, Z.2
Xiong, T.3
-
27
-
-
84878111771
-
New one-versus-all ν-SVM solving intra-inter class imbalance with extended manifold regularization and localized relative maximum margin
-
Wang X., Niu Y. New one-versus-all ν-SVM solving intra-inter class imbalance with extended manifold regularization and localized relative maximum margin. Neurocomputing 2013, 115:106-121.
-
(2013)
Neurocomputing
, vol.115
, pp. 106-121
-
-
Wang, X.1
Niu, Y.2
-
28
-
-
84893774796
-
Multi-step-ahead time series prediction using multiple-output support vector regression
-
Bao Y., Xiong T., Hu Z. Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing 2014, 129:482-493.
-
(2014)
Neurocomputing
, vol.129
, pp. 482-493
-
-
Bao, Y.1
Xiong, T.2
Hu, Z.3
-
29
-
-
84888287824
-
Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
-
Xiong T., Bao Y., Hu Z. Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowl.-Based Syst. 2014, 55:87-100.
-
(2014)
Knowl.-Based Syst.
, vol.55
, pp. 87-100
-
-
Xiong, T.1
Bao, Y.2
Hu, Z.3
-
30
-
-
84885867678
-
Does restraining end effect matter in EMD-based modeling framework for time series prediction? Some experimental evidences
-
Xiong T., Bao Y., Hu Z. Does restraining end effect matter in EMD-based modeling framework for time series prediction? Some experimental evidences. Neurocomputing 2014, 123:174-184.
-
(2014)
Neurocomputing
, vol.123
, pp. 174-184
-
-
Xiong, T.1
Bao, Y.2
Hu, Z.3
|