-
1
-
-
84879744885
-
The long-term stability of the human gut microbiota
-
Faith J.J., et al. The long-term stability of the human gut microbiota. Science 2013, 341:1237439.
-
(2013)
Science
, vol.341
, pp. 1237439
-
-
Faith, J.J.1
-
2
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
-
3
-
-
80054944901
-
Role of the commensal microbiota in normal and pathogenic host immune responses
-
Littman D.R., Pamer E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 2011, 10:311-323.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 311-323
-
-
Littman, D.R.1
Pamer, E.G.2
-
4
-
-
84861988021
-
Microbiota, disease, and back to health: a metastable journey
-
(137rv137)
-
Blumberg R., Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 2012, 4. (137rv137).
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Blumberg, R.1
Powrie, F.2
-
5
-
-
84861980130
-
Interactions between the microbiota and the immune system
-
Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science 2012, 336:1268-1273.
-
(2012)
Science
, vol.336
, pp. 1268-1273
-
-
Hooper, L.V.1
Littman, D.R.2
Macpherson, A.J.3
-
6
-
-
15544369658
-
Host-bacterial mutualism in the human intestine
-
Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307:1915-1920.
-
(2005)
Science
, vol.307
, pp. 1915-1920
-
-
Backhed, F.1
Ley, R.E.2
Sonnenburg, J.L.3
Peterson, D.A.4
Gordon, J.I.5
-
7
-
-
0034994474
-
Microbial modulation of innate defense: goblet cells and the intestinal mucus layer
-
Deplancke B., Gaskins H.R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 2001, 73:1131s-1141s.
-
(2001)
Am. J. Clin. Nutr.
, vol.73
, pp. 1131s-1141s
-
-
Deplancke, B.1
Gaskins, H.R.2
-
8
-
-
34249284197
-
Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota
-
Smith K., McCoy K.D., Macpherson A.J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 2007, 19:59-69.
-
(2007)
Semin. Immunol.
, vol.19
, pp. 59-69
-
-
Smith, K.1
McCoy, K.D.2
Macpherson, A.J.3
-
9
-
-
84952356353
-
Standardised animal models of host microbial mutualism
-
Macpherson A.J., McCoy K.D. Standardised animal models of host microbial mutualism. Mucosal Immunol. 2014.
-
(2014)
Mucosal Immunol.
-
-
Macpherson, A.J.1
McCoy, K.D.2
-
10
-
-
84920929686
-
An enteric virus can replace the beneficial function of commensal bacteria
-
Kernbauer E., Ding Y., Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 2014, 516:94-98.
-
(2014)
Nature
, vol.516
, pp. 94-98
-
-
Kernbauer, E.1
Ding, Y.2
Cadwell, K.3
-
11
-
-
56749146467
-
Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis
-
Bouskra D., et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008, 456:507-510.
-
(2008)
Nature
, vol.456
, pp. 507-510
-
-
Bouskra, D.1
-
12
-
-
80052365606
-
Pathobionts of the gastrointestinal microbiota and inflammatory disease
-
Chow J., Tang H.Q., Mazmanian S.K. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr. Opin. Immunol. 2011, 23:473-480.
-
(2011)
Curr. Opin. Immunol.
, vol.23
, pp. 473-480
-
-
Chow, J.1
Tang, H.Q.2
Mazmanian, S.K.3
-
13
-
-
84867658789
-
Intestinal commensal microbes as immune modulators
-
Ivanov I.I., Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012, 12:496-508.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 496-508
-
-
Ivanov, I.I.1
Honda, K.2
-
14
-
-
70349742524
-
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
-
Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
-
(2009)
Immunity
, vol.31
, pp. 677-689
-
-
Gaboriau-Routhiau, V.1
-
15
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
-
16
-
-
84901979873
-
Focused specificity of intestinal TH17 cells towards commensal bacterial antigens
-
Yang Y., et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 2014, 510:152-156.
-
(2014)
Nature
, vol.510
, pp. 152-156
-
-
Yang, Y.1
-
17
-
-
84898679249
-
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
-
Goto Y., et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 2014, 40:594-607.
-
(2014)
Immunity
, vol.40
, pp. 594-607
-
-
Goto, Y.1
-
18
-
-
84898685253
-
Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses
-
Lecuyer E., et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 2014, 40:608-620.
-
(2014)
Immunity
, vol.40
, pp. 608-620
-
-
Lecuyer, E.1
-
19
-
-
84882668842
-
Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora
-
Qiu J., et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 2013, 39:386-399.
-
(2013)
Immunity
, vol.39
, pp. 386-399
-
-
Qiu, J.1
-
20
-
-
35348945960
-
Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RB high CD4+ T cells
-
Stepankova R., et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RB high CD4+ T cells. Inflamm. Bowel Dis. 2007, 13:1202-1211.
-
(2007)
Inflamm. Bowel Dis.
, vol.13
, pp. 1202-1211
-
-
Stepankova, R.1
-
21
-
-
77953913586
-
Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
-
Wu H.J., et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010, 32:815-827.
-
(2010)
Immunity
, vol.32
, pp. 815-827
-
-
Wu, H.J.1
-
22
-
-
84925340169
-
Experimental mouse models of T cell-dependent inflammatory bowel disease
-
Song-Zhao G.X., Maloy K.J. Experimental mouse models of T cell-dependent inflammatory bowel disease. Methods Mol. Biol. 2014, 1193:199-211.
-
(2014)
Methods Mol. Biol.
, vol.1193
, pp. 199-211
-
-
Song-Zhao, G.X.1
Maloy, K.J.2
-
23
-
-
84866362664
-
IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells
-
Coccia M., et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J. Exp. Med. 2012, 209:1595-1609.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1595-1609
-
-
Coccia, M.1
-
24
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav E., et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011, 145:745-757.
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
-
25
-
-
77956569409
-
Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis
-
Garrett W.S., et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010, 8:292-300.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 292-300
-
-
Garrett, W.S.1
-
26
-
-
34848889673
-
Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system
-
Garrett W.S., et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007, 131:33-45.
-
(2007)
Cell
, vol.131
, pp. 33-45
-
-
Garrett, W.S.1
-
27
-
-
84867856710
-
The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells
-
Powell N., et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 2012, 37:674-684.
-
(2012)
Immunity
, vol.37
, pp. 674-684
-
-
Powell, N.1
-
28
-
-
84863436944
-
Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice
-
Devkota S., et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 2012, 487:104-108.
-
(2012)
Nature
, vol.487
, pp. 104-108
-
-
Devkota, S.1
-
29
-
-
22144490199
-
An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
-
Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122:107-118.
-
(2005)
Cell
, vol.122
, pp. 107-118
-
-
Mazmanian, S.K.1
Liu, C.H.2
Tzianabos, A.O.3
Kasper, D.L.4
-
30
-
-
77954738601
-
Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota
-
Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:12204-12209.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 12204-12209
-
-
Round, J.L.1
Mazmanian, S.K.2
-
31
-
-
84892774558
-
Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells
-
An D., et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 2014, 156:123-133.
-
(2014)
Cell
, vol.156
, pp. 123-133
-
-
An, D.1
-
32
-
-
84880941717
-
Production of alpha-galactosylceramide by a prominent member of the human gut microbiota
-
Wieland Brown L.C., et al. Production of alpha-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol. 2013, 11:e1001610.
-
(2013)
PLoS Biol.
, vol.11
, pp. e1001610
-
-
Wieland Brown, L.C.1
-
33
-
-
80051925894
-
The human commensal Bacteroides fragilis binds intestinal mucin
-
Huang J.Y., Lee S.M., Mazmanian S.K. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 2011, 17:137-141.
-
(2011)
Anaerobe
, vol.17
, pp. 137-141
-
-
Huang, J.Y.1
Lee, S.M.2
Mazmanian, S.K.3
-
34
-
-
79956315886
-
Intestinal bacterial colonization induces mutualistic regulatory T cell responses
-
Geuking M.B., et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011, 34:794-806.
-
(2011)
Immunity
, vol.34
, pp. 794-806
-
-
Geuking, M.B.1
-
35
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
-
36
-
-
84881477044
-
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
Atarashi K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500:232-236.
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
-
37
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341:569-573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
-
38
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
-
39
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504:451-455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
-
40
-
-
44449106055
-
A microbial symbiosis factor prevents intestinal inflammatory disease
-
Mazmanian S.K., Round J.L., Kasper D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008, 453:620-625.
-
(2008)
Nature
, vol.453
, pp. 620-625
-
-
Mazmanian, S.K.1
Round, J.L.2
Kasper, D.L.3
-
41
-
-
79956311926
-
The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
-
Round J.L., et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011, 332:974-977.
-
(2011)
Science
, vol.332
, pp. 974-977
-
-
Round, J.L.1
-
42
-
-
3242664636
-
Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
-
Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
-
(2004)
Cell
, vol.118
, pp. 229-241
-
-
Rakoff-Nahoum, S.1
Paglino, J.2
Eslami-Varzaneh, F.3
Edberg, S.4
Medzhitov, R.5
-
43
-
-
84863718303
-
Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88
-
Larsson E., et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 2012, 61:1124-1131.
-
(2012)
Gut
, vol.61
, pp. 1124-1131
-
-
Larsson, E.1
-
44
-
-
54549122338
-
Innate immunity and intestinal microbiota in the development of Type 1 diabetes
-
Wen L., et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008, 455:1109-1113.
-
(2008)
Nature
, vol.455
, pp. 1109-1113
-
-
Wen, L.1
-
45
-
-
77950250064
-
Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5
-
Vijay-Kumar M., et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010, 328:228-231.
-
(2010)
Science
, vol.328
, pp. 228-231
-
-
Vijay-Kumar, M.1
-
46
-
-
84865134857
-
Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice
-
Carvalho F.A., et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 2012, 12:139-152.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 139-152
-
-
Carvalho, F.A.1
-
47
-
-
84902281269
-
AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition
-
Chassaing B., Koren O., Carvalho F.A., Ley R.E., Gewirtz A.T. AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition. Gut 2014, 63:1069-1080.
-
(2014)
Gut
, vol.63
, pp. 1069-1080
-
-
Chassaing, B.1
Koren, O.2
Carvalho, F.A.3
Ley, R.E.4
Gewirtz, A.T.5
-
48
-
-
84913554895
-
Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice
-
(1363-1377 e1317)
-
Chassaing B., Ley R.E., Gewirtz A.T. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 2014, 147. (1363-1377 e1317).
-
(2014)
Gastroenterology
, vol.147
-
-
Chassaing, B.1
Ley, R.E.2
Gewirtz, A.T.3
-
49
-
-
84866461477
-
Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice
-
Ubeda C., et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 2012, 209:1445-1456.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1445-1456
-
-
Ubeda, C.1
-
50
-
-
84873372079
-
NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer
-
Couturier-Maillard A., et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 2013, 123:700-711.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 700-711
-
-
Couturier-Maillard, A.1
-
51
-
-
70349468054
-
Nod2 is required for the regulation of commensal microbiota in the intestine
-
Petnicki-Ocwieja T., et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:15813-15818.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 15813-15818
-
-
Petnicki-Ocwieja, T.1
-
52
-
-
84877292277
-
Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis
-
Robertson S.J., et al. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes 2013, 4:222-231.
-
(2013)
Gut Microbes
, vol.4
, pp. 222-231
-
-
Robertson, S.J.1
-
53
-
-
84856957894
-
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
-
Henao-Mejia J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482:179-185.
-
(2012)
Nature
, vol.482
, pp. 179-185
-
-
Henao-Mejia, J.1
-
54
-
-
84878971321
-
Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer
-
Hu B., et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:9862-9867.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 9862-9867
-
-
Hu, B.1
-
55
-
-
84896691062
-
NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
-
Wlodarska M., et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014, 156:1045-1059.
-
(2014)
Cell
, vol.156
, pp. 1045-1059
-
-
Wlodarska, M.1
-
56
-
-
74049122536
-
Enteric defensins are essential regulators of intestinal microbial ecology
-
Salzman N.H., et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 2010, 11:76-83.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 76-83
-
-
Salzman, N.H.1
-
57
-
-
84888858078
-
Dysbiosis-a consequence of Paneth cell dysfunction
-
Salzman N.H., Bevins C.L. Dysbiosis-a consequence of Paneth cell dysfunction. Semin. Immunol. 2013, 25:334-341.
-
(2013)
Semin. Immunol.
, vol.25
, pp. 334-341
-
-
Salzman, N.H.1
Bevins, C.L.2
-
58
-
-
80054122238
-
The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S., et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011, 334:255-258.
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
-
59
-
-
84922160830
-
The composition of the gut microbiota shapes the colon mucus barrier
-
Jakobsson H.E., et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015, 16:164-177.
-
(2015)
EMBO Rep.
, vol.16
, pp. 164-177
-
-
Jakobsson, H.E.1
-
60
-
-
84897398769
-
Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture
-
Sommer F., et al. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS One 2014, 9:e85254.
-
(2014)
PLoS One
, vol.9
, pp. e85254
-
-
Sommer, F.1
-
61
-
-
78650647326
-
Has the microbiota played a critical role in the evolution of the adaptive immune system?
-
Lee Y.K., Mazmanian S.K. Has the microbiota played a critical role in the evolution of the adaptive immune system?. Science 2010, 330:1768-1773.
-
(2010)
Science
, vol.330
, pp. 1768-1773
-
-
Lee, Y.K.1
Mazmanian, S.K.2
-
62
-
-
84923587206
-
Host adaptive immunity alters gut microbiota
-
Zhang H., Sparks J.B., Karyala S.V., Settlage R., Luo X.M. Host adaptive immunity alters gut microbiota. ISME J. 2015, 9:770-781.
-
(2015)
ISME J.
, vol.9
, pp. 770-781
-
-
Zhang, H.1
Sparks, J.B.2
Karyala, S.V.3
Settlage, R.4
Luo, X.M.5
-
63
-
-
84902590969
-
The role of the adaptive immune system in regulation of gut microbiota
-
Kato L.M., Kawamoto S., Maruya M., Fagarasan S. The role of the adaptive immune system in regulation of gut microbiota. Immunol. Rev. 2014, 260:67-75.
-
(2014)
Immunol. Rev.
, vol.260
, pp. 67-75
-
-
Kato, L.M.1
Kawamoto, S.2
Maruya, M.3
Fagarasan, S.4
-
64
-
-
84904384753
-
Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis
-
Kawamoto S., et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 2014, 41:152-165.
-
(2014)
Immunity
, vol.41
, pp. 152-165
-
-
Kawamoto, S.1
-
65
-
-
62449202866
-
Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches
-
Tsuji M., et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 2009, 323:1488-1492.
-
(2009)
Science
, vol.323
, pp. 1488-1492
-
-
Tsuji, M.1
-
66
-
-
73349099737
-
A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota
-
Cong Y., Feng T., Fujihashi K., Schoeb T.R., Elson C.O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:19256-19261.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 19256-19261
-
-
Cong, Y.1
Feng, T.2
Fujihashi, K.3
Schoeb, T.R.4
Elson, C.O.5
-
67
-
-
84875473675
-
Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses
-
Hirota K., et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 2013, 14:372-379.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 372-379
-
-
Hirota, K.1
-
68
-
-
0027389526
-
Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice
-
Klaasen H.L., et al. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect. Immun. 1993, 61:303-306.
-
(1993)
Infect. Immun.
, vol.61
, pp. 303-306
-
-
Klaasen, H.L.1
-
69
-
-
0033004028
-
Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system
-
Talham G.L., Jiang H.Q., Bos N.A., Cebra J.J. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect. Immun. 1999, 67:1992-2000.
-
(1999)
Infect. Immun.
, vol.67
, pp. 1992-2000
-
-
Talham, G.L.1
Jiang, H.Q.2
Bos, N.A.3
Cebra, J.J.4
-
70
-
-
0037112050
-
Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora
-
Fagarasan S., et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 2002, 298:1424-1427.
-
(2002)
Science
, vol.298
, pp. 1424-1427
-
-
Fagarasan, S.1
-
71
-
-
1242296822
-
Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut
-
Suzuki K., et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:1981-1986.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 1981-1986
-
-
Suzuki, K.1
-
72
-
-
84874694349
-
Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency
-
Maruya M., Kawamoto S., Kato L.M., Fagarasan S. Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency. Gut Microbes 2013, 4:165-171.
-
(2013)
Gut Microbes
, vol.4
, pp. 165-171
-
-
Maruya, M.1
Kawamoto, S.2
Kato, L.M.3
Fagarasan, S.4
-
73
-
-
84860123211
-
The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut
-
Kawamoto S., et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 2012, 336:485-489.
-
(2012)
Science
, vol.336
, pp. 485-489
-
-
Kawamoto, S.1
-
74
-
-
84922937083
-
MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health
-
Kubinak J.L., et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 2015, 17:153-163.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 153-163
-
-
Kubinak, J.L.1
-
75
-
-
84900549422
-
Proteobacteria-specific IgA regulates maturation of the intestinal microbiota
-
Mirpuri J., et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 2014, 5:28-39.
-
(2014)
Gut Microbes
, vol.5
, pp. 28-39
-
-
Mirpuri, J.1
-
76
-
-
35848931007
-
IgA response to symbiotic bacteria as a mediator of gut homeostasis
-
Peterson D.A., McNulty N.P., Guruge J.L., Gordon J.I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007, 2:328-339.
-
(2007)
Cell Host Microbe
, vol.2
, pp. 328-339
-
-
Peterson, D.A.1
McNulty, N.P.2
Guruge, J.L.3
Gordon, J.I.4
-
77
-
-
84883673597
-
Multi-faceted functions of secretory IgA at mucosal surfaces
-
Corthesy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 2013, 4:185.
-
(2013)
Front. Immunol.
, vol.4
, pp. 185
-
-
Corthesy, B.1
-
78
-
-
84887886701
-
Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut
-
Cullender T.C., et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 2013, 14:571-581.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 571-581
-
-
Cullender, T.C.1
-
79
-
-
84907300008
-
Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease
-
Palm N.W., et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014, 158:1000-1010.
-
(2014)
Cell
, vol.158
, pp. 1000-1010
-
-
Palm, N.W.1
|