메뉴 건너뛰기




Volumn 7, Issue 1, 2015, Pages

Accurate and efficient target prediction using a potency-sensitive influence-relevance voter

Author keywords

Fingerprints; Influence relevance voter; Large scale; Molecular potency; Random inactive molecules; Target prediction

Indexed keywords


EID: 84952304768     PISSN: None     EISSN: 17582946     Source Type: Journal    
DOI: 10.1186/s13321-015-0110-6     Document Type: Article
Times cited : (21)

References (57)
  • 3
    • 78650727351 scopus 로고    scopus 로고
    • Conformations and 3d pharmacophore searching
    • Schwab CH (2011) Conformations and 3d pharmacophore searching. Drug Discov Today Technol 7(4):245-253
    • (2011) Drug Discov Today Technol , vol.7 , Issue.4 , pp. 245-253
    • Schwab, C.H.1
  • 4
    • 79956024935 scopus 로고    scopus 로고
    • State-of-the-art in ligand-based virtual screening
    • 1:CAS:528:DC%2BC3MXmtVyru7g%3D
    • Ripphausen P, Nisius B, Bajorath J (2011) State-of-the-art in ligand-based virtual screening. Drug Discov Today 16(9):372-376
    • (2011) Drug Discov Today , vol.16 , Issue.9 , pp. 372-376
    • Ripphausen, P.1    Nisius, B.2    Bajorath, J.3
  • 5
    • 66149108701 scopus 로고    scopus 로고
    • Influence relevance voting: An accurate and interpretable virtual high throughput screening method
    • 1:CAS:528:DC%2BD1MXjvVSqt7w%3D
    • Swamidass SJ, Azencott C-A, Lin T-W, Gramajo H, Tsai S-C, Baldi P (2009) Influence relevance voting: an accurate and interpretable virtual high throughput screening method. J Chem Inf Model 49(4):756-766
    • (2009) J Chem Inf Model , vol.49 , Issue.4 , pp. 756-766
    • Swamidass, S.J.1    Azencott, C.-A.2    Lin, T.-W.3    Gramajo, H.4    Tsai, S.-C.5    Baldi, P.6
  • 7
    • 84884576643 scopus 로고    scopus 로고
    • Computational profiling of bioactive compounds using a target-dependent composite workflow
    • 1:CAS:528:DC%2BC3sXht1Gms7%2FF
    • Meslamani J, Bhajun R, Martz F, Rognan D (2013) Computational profiling of bioactive compounds using a target-dependent composite workflow. J Chem Inf Model 53(9):2322-2333
    • (2013) J Chem Inf Model , vol.53 , Issue.9 , pp. 2322-2333
    • Meslamani, J.1    Bhajun, R.2    Martz, F.3    Rognan, D.4
  • 8
    • 80051996206 scopus 로고    scopus 로고
    • Large-scale similarity search profiling of chembl compound data sets
    • Heikamp K, Bajorath J (2011) Large-scale similarity search profiling of chembl compound data sets. J Chem Inf Model 51(8):1831-1839
    • (2011) J Chem Inf Model , vol.51 , Issue.8 , pp. 1831-1839
    • Heikamp, K.1    Bajorath, J.2
  • 9
    • 77956837481 scopus 로고    scopus 로고
    • In silico receptorome screening of antipsychotic drugs
    • Vidal D, Mestres J (2010) In silico receptorome screening of antipsychotic drugs. Mol Inf 29(6-7):543-551
    • (2010) Mol Inf , vol.29 , Issue.6-7 , pp. 543-551
    • Vidal, D.1    Mestres, J.2
  • 10
    • 84887036726 scopus 로고    scopus 로고
    • Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach
    • Sugaya N (2013) Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach. J Chem Inf Model 53(10):2525-2537
    • (2013) J Chem Inf Model , vol.53 , Issue.10 , pp. 2525-2537
    • Sugaya, N.1
  • 11
    • 84908247106 scopus 로고    scopus 로고
    • Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins
    • Sugaya N (2014) Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins. J Chem Inf Model 54(10):2751-2763
    • (2014) J Chem Inf Model , vol.54 , Issue.10 , pp. 2751-2763
    • Sugaya, N.1
  • 13
    • 77953605369 scopus 로고    scopus 로고
    • Structure-based discovery of antibacterial drugs
    • 1:CAS:528:DC%2BC3cXnsVymu7w%3D
    • Simmons KJ, Chopra I, Fishwick CW (2010) Structure-based discovery of antibacterial drugs. Nat Rev Microbiol 8(7):501-510
    • (2010) Nat Rev Microbiol , vol.8 , Issue.7 , pp. 501-510
    • Simmons, K.J.1    Chopra, I.2    Fishwick, C.W.3
  • 14
    • 84884254531 scopus 로고    scopus 로고
    • Virtual screening in drug design
    • Springer, New York
    • Lill M (2013) Virtual screening in drug design. In: In Silico Models for Drug Discovery. Springer, New york, pp. 1-12
    • (2013) In Silico Models for Drug Discovery , pp. 1-12
    • Lill, M.1
  • 16
    • 78049429864 scopus 로고    scopus 로고
    • When is chemical similarity significant? the statistical distribution of chemical similarity scores and its extreme values
    • (in press)
    • Baldi P, Nasr R (2010) When is chemical similarity significant? the statistical distribution of chemical similarity scores and its extreme values. J Chem Inf Model:1205-1222 (in press)
    • (2010) J Chem Inf Model , pp. 1205-1222
    • Baldi, P.1    Nasr, R.2
  • 17
    • 84862022229 scopus 로고    scopus 로고
    • Speeding up chemical searches using the inverted index: The convergence of chemoinformatics and text search methods
    • 1:CAS:528:DC%2BC38XkvV2jt7o%3D
    • Nasr R, Vernica R, Li C, Baldi P (2012) Speeding up chemical searches using the inverted index: the convergence of chemoinformatics and text search methods. J Chem Inf Model 52(4):891-900
    • (2012) J Chem Inf Model , vol.52 , Issue.4 , pp. 891-900
    • Nasr, R.1    Vernica, R.2    Li, C.3    Baldi, P.4
  • 18
    • 27944507949 scopus 로고    scopus 로고
    • ChemDB: A public database of small molecules and related chemoinformatics resources
    • Chen J, Swamidass SJ, Dou Y, Bruand J, Baldi P (2005) ChemDB: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21:4133-4139
    • (2005) Bioinformatics , vol.21 , pp. 4133-4139
    • Chen, J.1    Swamidass, S.J.2    Dou, Y.3    Bruand, J.4    Baldi, P.5
  • 19
    • 34548742854 scopus 로고    scopus 로고
    • ChemDB update-full-text search and virtual chemical space
    • 1:CAS:528:DC%2BD2sXhtVOrs7nN
    • Chen JH, Linstead E, Swamidass SJ, Wang D, Baldi P (2007) ChemDB update-full-text search and virtual chemical space. Bioinformatics 23(17):2348-2351
    • (2007) Bioinformatics , vol.23 , Issue.17 , pp. 2348-2351
    • Chen, J.H.1    Linstead, E.2    Swamidass, S.J.3    Wang, D.4    Baldi, P.5
  • 22
    • 51349130206 scopus 로고    scopus 로고
    • A ligand-based approach to mining the chemogenomic space of drugs
    • Gregori-Puigjané E, Mestres J (2008) A ligand-based approach to mining the chemogenomic space of drugs. Comb Chem High Throughput Screen 11(8):669-676
    • (2008) Comb Chem High Throughput Screen , vol.11 , Issue.8 , pp. 669-676
    • Gregori-Puigjané, E.1    Mestres, J.2
  • 23
    • 68949119585 scopus 로고    scopus 로고
    • The topology of drug-target interaction networks: Implicit dependence on drug properties and target families
    • 1:CAS:528:DC%2BD1MXps1Kksbo%3D
    • Mestres J, Gregori-Puigjané E, Valverde S, Solé RV (2009) The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Mol Biosyst 5(9):1051-1057
    • (2009) Mol Biosyst , vol.5 , Issue.9 , pp. 1051-1057
    • Mestres, J.1    Gregori-Puigjané, E.2    Valverde, S.3    Solé, R.V.4
  • 24
    • 33745391215 scopus 로고    scopus 로고
    • Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases
    • 1:CAS:528:DC%2BD28Xis1Kiurk%3D
    • Nidhi GM, Davies JW, Jenkins JL (2006) Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases. J Chem Inf Model 46(3):1124-1133
    • (2006) J Chem Inf Model , vol.46 , Issue.3 , pp. 1124-1133
    • Nidhi, G.M.1    Davies, J.W.2    Jenkins, J.L.3
  • 25
    • 84871390611 scopus 로고    scopus 로고
    • The future of virtual compound screening
    • 1:CAS:528:DC%2BC3sXlt1ymuw%3D%3D
    • Heikamp K, Bajorath J (2013) The future of virtual compound screening. Chem Biol Drug Des 81(1):33-40
    • (2013) Chem Biol Drug des , vol.81 , Issue.1 , pp. 33-40
    • Heikamp, K.1    Bajorath, J.2
  • 26
    • 84952353416 scopus 로고    scopus 로고
    • ChEMBL
    • ChEMBL (2014)
    • (2014)
  • 27
    • 0029987708 scopus 로고    scopus 로고
    • Mutational analysis and molecular modeling of the nonapeptide hormone binding domains of the [arg8]vasotocin receptor
    • 1:CAS:528:DyaK28Xkt1Wiu70%3D
    • Hausmann H, Richters A, Kreienkamp HJ, Meyerhof W, Mattes H, Lederis K, Zwiers H, Richter D (1996) Mutational analysis and molecular modeling of the nonapeptide hormone binding domains of the [arg8]vasotocin receptor. Proc Natl Acad Sci USA 93(14):6907-6912
    • (1996) Proc Natl Acad Sci USA , vol.93 , Issue.14 , pp. 6907-6912
    • Hausmann, H.1    Richters, A.2    Kreienkamp, H.J.3    Meyerhof, W.4    Mattes, H.5    Lederis, K.6    Zwiers, H.7    Richter, D.8
  • 28
    • 84883239935 scopus 로고    scopus 로고
    • In silico target predictions: Defining a benchmarking data set and comparison of performance of the multiclass naive bayes and parzen-rosenblatt window
    • 1:CAS:528:DC%2BC3sXhtVKgtrjN
    • Koutsoukas A, Lowe R, KalantarMotamedi Y, Mussa HY, Klaffke W, Mitchell JB, Glen RC, Bender A (2013) In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass naive bayes and parzen-rosenblatt window. J Chem Inf Model 53(8):1957-1966
    • (2013) J Chem Inf Model , vol.53 , Issue.8 , pp. 1957-1966
    • Koutsoukas, A.1    Lowe, R.2    KalantarMotamedi, Y.3    Mussa, H.Y.4    Klaffke, W.5    Mitchell, J.B.6    Glen, R.C.7    Bender, A.8
  • 30
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • 1:CAS:528:DC%2BC3cXlt1Onsbg%3D
    • Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742-754
    • (2010) J Chem Inf Model , vol.50 , Issue.5 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 31
    • 33749598013 scopus 로고    scopus 로고
    • Cheminformatics analysis and learning in a data pipelining environment
    • Brown MHRD, Varma-O'Brien S, Rogers D (2006) Cheminformatics analysis and learning in a data pipelining environment. Mol Drivers 10:283-299
    • (2006) Mol Drivers , vol.10 , pp. 283-299
    • Brown, M.H.R.D.1    Varma-O'Brien, S.2    Rogers, D.3
  • 32
    • 37249011239 scopus 로고    scopus 로고
    • Lossless compression of chemical fingerprints using integer entropy codes improves storage and retrieval
    • 1:CAS:528:DC%2BD2sXht1altr%2FO
    • Baldi P, Benz RW, Hirschberg D, Swamidass SJ (2007) Lossless compression of chemical fingerprints using integer entropy codes improves storage and retrieval. J Chem Inf Model 47(6):2098-2109
    • (2007) J Chem Inf Model , vol.47 , Issue.6 , pp. 2098-2109
    • Baldi, P.1    Benz, R.W.2    Hirschberg, D.3    Swamidass, S.J.4
  • 34
    • 2942700377 scopus 로고    scopus 로고
    • A. Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures
    • 1:CAS:528:DC%2BD2cXhsVOis7g%3D
    • Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) A. comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J Chem Inf Model 44:1177-1185
    • (2004) J Chem Inf Model , vol.44 , pp. 1177-1185
    • Hert, J.1    Willett, P.2    Wilton, D.J.3    Acklin, P.4    Azzaoui, K.5    Jacoby, E.6    Schuffenhauer, A.7
  • 35
    • 27544441634 scopus 로고    scopus 로고
    • Enhancing the effectiveness of similarity-based virtual screening using nearest-neighbor information
    • 1:CAS:528:DC%2BD2MXhtVGisrjL
    • Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2005) Enhancing the effectiveness of similarity-based virtual screening using nearest-neighbor information. J Med Chem 48:7049-7054
    • (2005) J Med Chem , vol.48 , pp. 7049-7054
    • Hert, J.1    Willett, P.2    Wilton, D.J.3    Acklin, P.4    Azzaoui, K.5    Jacoby, E.6    Schuffenhauer, A.7
  • 36
    • 74049146045 scopus 로고    scopus 로고
    • Large scale study of multiple-molecule queries
    • Nasr RJ, Swamidass SJ, Baldi PF (2009) Large scale study of multiple-molecule queries. J Cheminf 1:7
    • (2009) J Cheminf , vol.1 , pp. 7
    • Nasr, R.J.1    Swamidass, S.J.2    Baldi, P.F.3
  • 37
    • 44449107147 scopus 로고    scopus 로고
    • Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2d fingerprints and multiple reference compounds
    • 1:CAS:528:DC%2BD1cXivVSks7g%3D
    • Geppert H, Horváth T, Gärtner T, Wrobel S, Bajorath J (2008) Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2d fingerprints and multiple reference compounds. J Chem Inf Model 48(4):742-746
    • (2008) J Chem Inf Model , vol.48 , Issue.4 , pp. 742-746
    • Geppert, H.1    Horváth, T.2    Gärtner, T.3    Wrobel, S.4    Bajorath, J.5
  • 38
    • 33750294461 scopus 로고    scopus 로고
    • The pharmacophore kernel for virtual screening with support vector machines
    • Mahé P, Ralaivola L, Stoven V, Vert J-P (2006) The pharmacophore kernel for virtual screening with support vector machines. J Chem Inf Model 46(5):2003-2014
    • (2006) J Chem Inf Model , vol.46 , Issue.5 , pp. 2003-2014
    • Mahé, P.1    Ralaivola, L.2    Stoven, V.3    Vert, J.-P.4
  • 39
    • 26944486424 scopus 로고    scopus 로고
    • Kernels for small molecules and the prediction of mutagenicity, toxicity, and anti-cancer activity
    • SUPPLEMENT 1 (Proceedings of the 2005 ISMB Conference)
    • Swamidass SJ, Chen J, Bruand J, Phung P, Ralaivola L, Baldi P (2005) Kernels for small molecules and the prediction of mutagenicity, toxicity, and anti-cancer activity. Bioinformatics 21(Supplement 1):359-368 (Proceedings of the 2005 ISMB Conference)
    • (2005) Bioinformatics , vol.21 , pp. 359-368
    • Swamidass, S.J.1    Chen, J.2    Bruand, J.3    Phung, P.4    Ralaivola, L.5    Baldi, P.6
  • 40
    • 0000913324 scopus 로고    scopus 로고
    • Svmtorch: Support vector machines for large-scale regression problems
    • Collobert R, Bengio S (2001) Svmtorch: support vector machines for large-scale regression problems. J Mach Learn Res 1:143-160
    • (2001) J Mach Learn Res , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 41
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45(1):5-32
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 42
    • 33846856225 scopus 로고    scopus 로고
    • Random forest models to predict aqueous solubility
    • 1:CAS:528:DC%2BD28XhtlCit7vF
    • Palmer DS, O'Boyle NM, Glen RC, Mitchell JB (2007) Random forest models to predict aqueous solubility. J Chem Inf Model 47(1):150-158
    • (2007) J Chem Inf Model , vol.47 , Issue.1 , pp. 150-158
    • Palmer, D.S.1    O'Boyle, N.M.2    Glen, R.C.3    Mitchell, J.B.4
  • 43
    • 33846857994 scopus 로고    scopus 로고
    • Random forest prediction of mutagenicity from empirical physicochemical descriptors
    • Zhang Q-Y, Aires-de-Sousa J (2007) Random forest prediction of mutagenicity from empirical physicochemical descriptors. J Chem Inf Model 47(1):1-8
    • (2007) J Chem Inf Model , vol.47 , Issue.1 , pp. 1-8
    • Zhang, Q.-Y.1    Aires-De-Sousa, J.2
  • 44
    • 52049109838 scopus 로고    scopus 로고
    • Natural products in drug discovery
    • 1:CAS:528:DC%2BD1cXhtFCgu7fJ
    • Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19):894-901
    • (2008) Drug Discov Today , vol.13 , Issue.19 , pp. 894-901
    • Harvey, A.L.1
  • 45
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and qsar modeling
    • 1:CAS:528:DC%2BD3sXos1Wiu7s%3D
    • Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and qsar modeling. J Chem Inf Model 43(6):1947-1958
    • (2003) J Chem Inf Model , vol.43 , Issue.6 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.C.4    Sheridan, R.P.5    Feuston, B.P.6
  • 46
    • 84952353417 scopus 로고    scopus 로고
    • Scikit-Learn
    • Scikit-Learn (2013)
    • (2013)
  • 48
    • 8644262601 scopus 로고    scopus 로고
    • Confidence intervals and prediction intervals for feed-forward neural networks
    • Dybowski R, Roberts SJ (2001) Confidence intervals and prediction intervals for feed-forward neural networks. Clin Appl Artif Neural Netw:298-326
    • (2001) Clin Appl Artif Neural Netw , pp. 298-326
    • Dybowski, R.1    Roberts, S.J.2
  • 49
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145-1159
    • (1997) Pattern Recogn , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 50
    • 26944489929 scopus 로고    scopus 로고
    • Mcmaster university data-mining and docking competition computational models on the catwalk
    • Parker CN (2005) Mcmaster university data-mining and docking competition computational models on the catwalk. J Biomol Screen 10(7):647-648
    • (2005) J Biomol Screen , vol.10 , Issue.7 , pp. 647-648
    • Parker, C.N.1
  • 52
    • 70350512851 scopus 로고    scopus 로고
    • Target fishing for chemical compounds using target-ligand activity data and ranking based methods
    • 1:CAS:528:DC%2BD1MXhtFGiurfF
    • Wale N, Karypis G (2009) Target fishing for chemical compounds using target-ligand activity data and ranking based methods. J Chem Inf Model 49(10):2190-2201
    • (2009) J Chem Inf Model , vol.49 , Issue.10 , pp. 2190-2201
    • Wale, N.1    Karypis, G.2
  • 53
    • 84896506204 scopus 로고    scopus 로고
    • Xenosite: Accurately predicting CYP-mediated sites of metabolism with neural networks
    • 1:CAS:528:DC%2BC3sXhslKks77E
    • Zaretzki J, Matlock M, Swamidass SJ (2013) Xenosite: accurately predicting cyp-mediated sites of metabolism with neural networks. J Chem Inf Model 53(12):3373-3383
    • (2013) J Chem Inf Model , vol.53 , Issue.12 , pp. 3373-3383
    • Zaretzki, J.1    Matlock, M.2    Swamidass, S.J.3
  • 54
    • 79952170351 scopus 로고    scopus 로고
    • Large-scale learning of structure- activity relationships using a linear support vector machine and problem-specific metrics
    • 1:CAS:528:DC%2BC3MXoslGi
    • Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Ostermann C, Zell A (2011) Large-scale learning of structure- activity relationships using a linear support vector machine and problem-specific metrics. J Chem Inf Model 51(2):203-213
    • (2011) J Chem Inf Model , vol.51 , Issue.2 , pp. 203-213
    • Hinselmann, G.1    Rosenbaum, L.2    Jahn, A.3    Fechner, N.4    Ostermann, C.5    Zell, A.6
  • 56
    • 34249092941 scopus 로고    scopus 로고
    • Virtual high-throughput screening of molecular databases
    • 1:CAS:528:DC%2BD2sXmtVWlsrc%3D
    • Seifert M, Kraus J, Kramer B (2007) Virtual high-throughput screening of molecular databases. Curr Opin Drug Discov Dev 10(3):298-307
    • (2007) Curr Opin Drug Discov Dev , vol.10 , Issue.3 , pp. 298-307
    • Seifert, M.1    Kraus, J.2    Kramer, B.3
  • 57
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
    • 1:CAS:528:DC%2BC3sXpvVGht7g%3D
    • Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53(7):1563-1575
    • (2013) J Chem Inf Model , vol.53 , Issue.7 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.