메뉴 건너뛰기




Volumn 54, Issue 10, 2014, Pages 2751-2763

Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins

Author keywords

[No Author keywords available]

Indexed keywords

EFFICIENCY; LIGANDS; MACHINE LEARNING; PROTEINS; SEEBECK EFFECT;

EID: 84908247106     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci5003262     Document Type: Article
Times cited : (20)

References (40)
  • 2
    • 77950560159 scopus 로고    scopus 로고
    • An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs
    • Perola, E. An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs J. Med. Chem. 2010, 53, 2986-2997
    • (2010) J. Med. Chem. , vol.53 , pp. 2986-2997
    • Perola, E.1
  • 4
    • 79851483555 scopus 로고    scopus 로고
    • A practical use of ligand efficiency indices out of the fragment-based approach: Ligand efficiency-guided lead identification of soluble epoxide hydrolase inhibitors
    • Tanaka, D.; Tsuda, Y.; Shiyama, T.; Nishimura, T.; Chiyo, N.; Tominaga, Y.; Sawada, N.; Mimoto, T.; Kusunose, N. A practical use of ligand efficiency indices out of the fragment-based approach: ligand efficiency-guided lead identification of soluble epoxide hydrolase inhibitors J. Med. Chem. 2011, 54, 851-857
    • (2011) J. Med. Chem. , vol.54 , pp. 851-857
    • Tanaka, D.1    Tsuda, Y.2    Shiyama, T.3    Nishimura, T.4    Chiyo, N.5    Tominaga, Y.6    Sawada, N.7    Mimoto, T.8    Kusunose, N.9
  • 5
    • 85027923372 scopus 로고    scopus 로고
    • Virtual and experimental high-throughput screening (HTS) in search of novel inosine 5′-monophosphate dehydrogenase II (IMPDH II) inhibitors
    • Dunkern, T.; Prabhu, A.; Kharkar, P. S.; Goebel, H.; Rolser, E.; Burckhard-Boer, W.; Arumugam, P.; Makhija, M. T. Virtual and experimental high-throughput screening (HTS) in search of novel inosine 5′-monophosphate dehydrogenase II (IMPDH II) inhibitors J. Comput. Aided Mol. Des. 2012, 26, 1277-1292
    • (2012) J. Comput. Aided Mol. Des. , vol.26 , pp. 1277-1292
    • Dunkern, T.1    Prabhu, A.2    Kharkar, P.S.3    Goebel, H.4    Rolser, E.5    Burckhard-Boer, W.6    Arumugam, P.7    Makhija, M.T.8
  • 6
    • 84895811180 scopus 로고    scopus 로고
    • Virtual fragment screening on GPCRs: A case study on dopamine D3 and histamine H4 receptors
    • Vass, M.; Schmidt, E.; Horti, F.; Keserû, G. M. Virtual fragment screening on GPCRs: a case study on dopamine D3 and histamine H4 receptors Eur. J. Med. Chem. 2014, 77, 38-46
    • (2014) Eur. J. Med. Chem. , vol.77 , pp. 38-46
    • Vass, M.1    Schmidt, E.2    Horti, F.3    Keserû, G.M.4
  • 7
    • 26944463088 scopus 로고    scopus 로고
    • Virtual screen for ligands of orphan G protein-coupled receptors
    • Bock, J. R.; Gough, D. A. Virtual screen for ligands of orphan G protein-coupled receptors J. Chem. Inf. Model. 2005, 45, 1402-1414
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1402-1414
    • Bock, J.R.1    Gough, D.A.2
  • 8
    • 38349114038 scopus 로고    scopus 로고
    • Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor
    • Faulon, J.-L.; Misra, M.; Martin, S.; Sale, K.; Sapra, R. Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor Bioinformatics 2008, 24, 225-233
    • (2008) Bioinformatics , vol.24 , pp. 225-233
    • Faulon, J.-L.1    Misra, M.2    Martin, S.3    Sale, K.4    Sapra, R.5
  • 9
    • 52749098733 scopus 로고    scopus 로고
    • Virtual screening of GPCRs: An in silico chemogenomics approach
    • Jacob, L.; Hoffmann, B.; Stoven, V.; Vert, J. P. Virtual screening of GPCRs: An in silico chemogenomics approach BMC Bioinformatics 2008, 9, 363
    • (2008) BMC Bioinformatics , vol.9 , pp. 363
    • Jacob, L.1    Hoffmann, B.2    Stoven, V.3    Vert, J.P.4
  • 10
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • Jacob, L.; Vert, J. P. Protein-ligand interaction prediction: an improved chemogenomics approach Bioinformatics 2008, 24, 2149-2156
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.P.2
  • 11
    • 66149090260 scopus 로고    scopus 로고
    • Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
    • Geppert, H.; Humrich, J.; Stumpfe, D.; Gärtner, T.; Bajorath, J. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors J. Chem. Inf. Model. 2009, 49, 767-779
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 767-779
    • Geppert, H.1    Humrich, J.2    Stumpfe, D.3    Gärtner, T.4    Bajorath, J.5
  • 12
    • 70350495651 scopus 로고    scopus 로고
    • Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
    • Wassermann, A. M.; Geppert, H.; Bajorath, J. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects J. Chem. Inf. Model. 2009, 49, 2155-2167
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2155-2167
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 13
    • 66149131771 scopus 로고    scopus 로고
    • Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: Application to G protein-coupled receptors and their ligands
    • Weill, N.; Rognan, D. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands J. Chem. Inf. Model. 2009, 49, 1049-1062
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1049-1062
    • Weill, N.1    Rognan, D.2
  • 14
    • 84862647729 scopus 로고    scopus 로고
    • Predicting a small molecule-kinase interaction map: A machine learning approach
    • Buchwald, F.; Richter, L.; Kramer, S. Predicting a small molecule-kinase interaction map: A machine learning approach J. Cheminform. 2011, 3, 22
    • (2011) J. Cheminform. , vol.3 , pp. 22
    • Buchwald, F.1    Richter, L.2    Kramer, S.3
  • 15
    • 82355168473 scopus 로고    scopus 로고
    • Computational screening for active compounds targeting protein sequences: Methodology and experimental validation
    • Wang, F.; Liu, D.; Wang, H.; Luo, C.; Zheng, M.; Liu, H.; Zhu, W.; Luo, X.; Zhang, J.; Jiang, H. Computational screening for active compounds targeting protein sequences: methodology and experimental validation J. Chem. Inf. Model. 2011, 51, 2821-2828
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2821-2828
    • Wang, F.1    Liu, D.2    Wang, H.3    Luo, C.4    Zheng, M.5    Liu, H.6    Zhu, W.7    Luo, X.8    Zhang, J.9    Jiang, H.10
  • 16
    • 80155156908 scopus 로고    scopus 로고
    • Kernel-based data fusion improves the drug-protein interaction prediction
    • Wang, Y.-C.; Zhang, C.-H.; Deng, N.-Y.; Wang, Y. Kernel-based data fusion improves the drug-protein interaction prediction Comput. Biol. Chem. 2011, 35, 353-362
    • (2011) Comput. Biol. Chem. , vol.35 , pp. 353-362
    • Wang, Y.-C.1    Zhang, C.-H.2    Deng, N.-Y.3    Wang, Y.4
  • 18
    • 84867908823 scopus 로고    scopus 로고
    • Large-scale prediction of drug-target interactions using protein sequences and drug topological structures
    • Cao, D. S.; Liu, S.; Xu, Q. S.; Lu, H. M.; Huang, J. H.; Hu, Q. N.; Liang, Y. Z. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures Anal. Chim. Acta 2012, 752, 1-10
    • (2012) Anal. Chim. Acta , vol.752 , pp. 1-10
    • Cao, D.S.1    Liu, S.2    Xu, Q.S.3    Lu, H.M.4    Huang, J.H.5    Hu, Q.N.6    Liang, Y.Z.7
  • 19
    • 84861610134 scopus 로고    scopus 로고
    • A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data
    • Yu, H.; Chen, J.; Xu, X.; Li, Y.; Zhao, H.; Fang, Y.; Li, X.; Zhou, W.; Wang, W.; Wang, Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data PLoS One 2012, 7, e37608
    • (2012) PLoS One , vol.7 , pp. 37608
    • Yu, H.1    Chen, J.2    Xu, X.3    Li, Y.4    Zhao, H.5    Fang, Y.6    Li, X.7    Zhou, W.8    Wang, W.9    Wang, Y.10
  • 20
    • 33846108633 scopus 로고    scopus 로고
    • BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities
    • Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities Nucleic Acids Res. 2007, 35, D198-D201
    • (2007) Nucleic Acids Res. , vol.35 , pp. 198-D201
    • Liu, T.1    Lin, Y.2    Wen, X.3    Jorissen, R.N.4    Gilson, M.K.5
  • 23
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets Nucleic Acids Res. 2012, 40, D109-D114
    • (2012) Nucleic Acids Res. , vol.40 , pp. 109-D114
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Furumichi, M.4    Tanabe, M.5
  • 24
    • 84887036726 scopus 로고    scopus 로고
    • Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach
    • Sugaya, N. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach J. Chem. Inf. Model. 2013, 53, 2525-2537
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2525-2537
    • Sugaya, N.1
  • 25
    • 84908244695 scopus 로고    scopus 로고
    • (accessed May 7)
    • GPCR SARfari; https://www.ebi.ac.uk/chembl/sarfari/gpcrsarfari (accessed May 7, 2014).
    • (2014) GPCR SARfari
  • 26
    • 84908227747 scopus 로고    scopus 로고
    • (accessed May 7)
    • Kinase SARfari; https://www.ebi.ac.uk/chembl/sarfari/kinasesarfari (accessed May 7, 2014).
    • (2014) Kinase SARfari
  • 27
    • 35748934487 scopus 로고    scopus 로고
    • The influence of drug-like concepts on decision-making in medicinal chemistry
    • Leeson, P. D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry Nat. Rev. Drug Discovery 2007, 6, 881-890
    • (2007) Nat. Rev. Drug Discovery , vol.6 , pp. 881-890
    • Leeson, P.D.1    Springthorpe, B.2
  • 28
    • 17044403086 scopus 로고    scopus 로고
    • Ligand efficiency indices as guideposts for drug discovery
    • Abad-Zapatero, C.; Metz, J. T. Ligand efficiency indices as guideposts for drug discovery Drug Discovery Today 2005, 10, 464-469
    • (2005) Drug Discovery Today , vol.10 , pp. 464-469
    • Abad-Zapatero, C.1    Metz, J.T.2
  • 29
  • 30
    • 0023289451 scopus 로고
    • Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions
    • Ghose, A. K.; Crippen, G. M. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions J. Chem. Inf. Comput. Sci. 1987, 27, 21-35
    • (1987) J. Chem. Inf. Comput. Sci. , vol.27 , pp. 21-35
    • Ghose, A.K.1    Crippen, G.M.2
  • 31
    • 84855757480 scopus 로고    scopus 로고
    • (accessed May 13)
    • MOE: Molecular Operating Environment; http://www.chemcomp.com/MOE-Molecular-Operating-Environment.htm (accessed May 13, 2014).
    • (2014) MOE: Molecular Operating Environment
  • 32
  • 33
    • 84908248695 scopus 로고    scopus 로고
    • (accessed May 7)
    • Open Babel; http://openbabel.org/wiki/Main-Page (accessed May 7, 2014).
    • (2014) Open Babel
  • 34
    • 84908224761 scopus 로고    scopus 로고
    • (accessed April 8)
    • FP2-Open Babel; http://openbabel.org/wiki/FP2 (accessed April 8, 2014).
    • (2014) FP2-Open Babel
  • 35
    • 84908226953 scopus 로고    scopus 로고
    • (accessed May 13)
    • GPCRSARfari ftp site; ftp://ftp.ebi.ac.uk/pub/databases/chembl/GPCRSARfari/releases/ (accessed May 13, 2014).
    • (2014) GPCRSARfari Ftp Site
  • 36
    • 84908241947 scopus 로고    scopus 로고
    • (accessed May 13)
    • KinaseSARfari ftp site; ftp://ftp.ebi.ac.uk/pub/databases/chembl/KinaseSARfari/releases/ (accessed May 13, 2014).
    • (2014) KinaseSARfari Ftp Site
  • 38
    • 84908252288 scopus 로고    scopus 로고
    • (accessed May 13)
    • GPU-accelerated LIBSVM; http://mklab.iti.gr/project/GPU-LIBSVM (accessed May 13, 2014).
    • (2014) GPU-accelerated LIBSVM
  • 39
    • 84908228082 scopus 로고    scopus 로고
    • (accessed April 8)
    • LIBSVM tools; http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/#grid-parameter-search-for-regression (accessed April 8, 2014).
    • (2014) LIBSVM Tools
  • 40
    • 0003592077 scopus 로고    scopus 로고
    • , Second Edition; John Wiley & Sons: Hoboken, NJ, Chapter 2
    • Agresti, A. In An Introduction to Categorical Data Analysis, Second Edition; John Wiley & Sons: Hoboken, NJ, 2007; Chapter 2, pp 38-39.
    • (2007) An Introduction to Categorical Data Analysis , pp. 38-39
    • Agresti, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.