메뉴 건너뛰기




Volumn 25, Issue 12, 2015, Pages 793-802

The Biosynthetic Basis of Cell Size Control

Author keywords

[No Author keywords available]

Indexed keywords

CELL DNA; HISTONE; MESSENGER RNA; RIBOSOME PROTEIN; RIBOSOME RNA;

EID: 84950133504     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.10.006     Document Type: Review
Times cited : (107)

References (75)
  • 1
    • 77953531053 scopus 로고    scopus 로고
    • Scaling properties of cell and organelle size
    • Chan Y-H.M., Marshall W.F. Scaling properties of cell and organelle size. Organogenesis 2010, 6:88-96.
    • (2010) Organogenesis , vol.6 , pp. 88-96
    • Chan, Y.-H.M.1    Marshall, W.F.2
  • 2
    • 84860777508 scopus 로고    scopus 로고
    • Organelle growth control through limiting pools of cytoplasmic components
    • Goehring N.W., Hyman A.A. Organelle growth control through limiting pools of cytoplasmic components. Curr. Biol. 2012, 22:R330-R339.
    • (2012) Curr. Biol. , vol.22 , pp. R330-R339
    • Goehring, N.W.1    Hyman, A.A.2
  • 3
    • 50549159710 scopus 로고
    • The distribution of nucleic acids and protein between different sized yeast cells
    • Williamson D.H., Scopes A.W. The distribution of nucleic acids and protein between different sized yeast cells. Exp. Cell Res. 1961, 24:151-153.
    • (1961) Exp. Cell Res. , vol.24 , pp. 151-153
    • Williamson, D.H.1    Scopes, A.W.2
  • 4
    • 0015759539 scopus 로고
    • Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations
    • Crissman H.A., Steinkamp J.A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J. Cell Biol. 1972, 59:766-771.
    • (1972) J. Cell Biol. , vol.59 , pp. 766-771
    • Crissman, H.A.1    Steinkamp, J.A.2
  • 5
    • 26844562643 scopus 로고    scopus 로고
    • Counting cytokinesis proteins globally and locally in fission yeast
    • Wu J-Q., Pollard T.D. Counting cytokinesis proteins globally and locally in fission yeast. Science 2005, 310:310-314.
    • (2005) Science , vol.310 , pp. 310-314
    • Wu, J.-Q.1    Pollard, T.D.2
  • 6
    • 33745220278 scopus 로고    scopus 로고
    • Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise
    • Newman J.R.S., et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 2006, 441:840-846.
    • (2006) Nature , vol.441 , pp. 840-846
    • Newman, J.R.S.1
  • 7
    • 78649298344 scopus 로고    scopus 로고
    • A coordinated global control over cellular transcription
    • Zhurinsky J., et al. A coordinated global control over cellular transcription. Curr. Biol. 2010, 20:2010-2015.
    • (2010) Curr. Biol. , vol.20 , pp. 2010-2015
    • Zhurinsky, J.1
  • 8
    • 0028809261 scopus 로고
    • Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP
    • Schmidt E.E. Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP. J. Cell Biol. 1995, 128:467-483.
    • (1995) J. Cell Biol. , vol.128 , pp. 467-483
    • Schmidt, E.E.1
  • 9
    • 84928214314 scopus 로고    scopus 로고
    • Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms
    • Padovan-Merhar O., et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 2015, 58:339-352.
    • (2015) Mol. Cell , vol.58 , pp. 339-352
    • Padovan-Merhar, O.1
  • 10
    • 84922776628 scopus 로고    scopus 로고
    • The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise
    • Kempe H., et al. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise. Mol. Biol. Cell 2015, 26:797-804.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 797-804
    • Kempe, H.1
  • 11
    • 34548511797 scopus 로고    scopus 로고
    • The size of the nucleus increases as yeast cells grow
    • Jorgensen P., et al. The size of the nucleus increases as yeast cells grow. Mol. Biol. Cell 2007, 18:3523-3532.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3523-3532
    • Jorgensen, P.1
  • 12
    • 36348943531 scopus 로고    scopus 로고
    • Nuclear size control in fission yeast
    • Neumann F.R., Nurse P. Nuclear size control in fission yeast. J. Cell Biol. 2007, 179:593-600.
    • (2007) J. Cell Biol. , vol.179 , pp. 593-600
    • Neumann, F.R.1    Nurse, P.2
  • 13
    • 84868556435 scopus 로고    scopus 로고
    • Mitochondrial network size scaling in budding yeast
    • Rafelski S.M., et al. Mitochondrial network size scaling in budding yeast. Science 2012, 338:822-824.
    • (2012) Science , vol.338 , pp. 822-824
    • Rafelski, S.M.1
  • 14
    • 79961243037 scopus 로고    scopus 로고
    • Limiting amounts of centrosome material set centrosome size in C. elegans embryos
    • Decker M., et al. Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr. Biol. 2011, 21:1259-1267.
    • (2011) Curr. Biol. , vol.21 , pp. 1259-1267
    • Decker, M.1
  • 15
    • 84899841563 scopus 로고    scopus 로고
    • Organelle size scaling of the budding yeast vacuole is tuned by membrane trafficking rates
    • Chan Y-H.M., Marshall W.F. Organelle size scaling of the budding yeast vacuole is tuned by membrane trafficking rates. Biophys. J. 2014, 106:1986-1996.
    • (2014) Biophys. J. , vol.106 , pp. 1986-1996
    • Chan, Y.-H.M.1    Marshall, W.F.2
  • 16
    • 84924804206 scopus 로고    scopus 로고
    • Inverse size scaling of the nucleolus by a concentration-dependent phase transition
    • Weber S.C., Brangwynne C.P. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 2015, 25:641-646.
    • (2015) Curr. Biol. , vol.25 , pp. 641-646
    • Weber, S.C.1    Brangwynne, C.P.2
  • 17
    • 49649119879 scopus 로고    scopus 로고
    • Evidence for an upper limit to mitotic spindle length
    • Wühr M., et al. Evidence for an upper limit to mitotic spindle length. Curr. Biol. 2008, 18:1256-1261.
    • (2008) Curr. Biol. , vol.18 , pp. 1256-1261
    • Wühr, M.1
  • 18
    • 70349269058 scopus 로고    scopus 로고
    • Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo
    • Hara Y., Kimura A. Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo. Curr. Biol. 2009, 19:1549-1554.
    • (2009) Curr. Biol. , vol.19 , pp. 1549-1554
    • Hara, Y.1    Kimura, A.2
  • 19
    • 84926285455 scopus 로고    scopus 로고
    • Scaling, selection, and evolutionary dynamics of the mitotic spindle
    • Farhadifar R., et al. Scaling, selection, and evolutionary dynamics of the mitotic spindle. Curr. Biol. 2015, 25:732-740.
    • (2015) Curr. Biol. , vol.25 , pp. 732-740
    • Farhadifar, R.1
  • 20
    • 84887771704 scopus 로고    scopus 로고
    • Changes in cytoplasmic volume are sufficient to drive spindle scaling
    • Hazel J., et al. Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 2013, 342:853-856.
    • (2013) Science , vol.342 , pp. 853-856
    • Hazel, J.1
  • 21
    • 84887704731 scopus 로고    scopus 로고
    • Cytoplasmic volume modulates spindle size during embryogenesis
    • Good M.C., et al. Cytoplasmic volume modulates spindle size during embryogenesis. Science 2013, 342:856-860.
    • (2013) Science , vol.342 , pp. 856-860
    • Good, M.C.1
  • 22
    • 84931269353 scopus 로고    scopus 로고
    • Size sensors in bacteria, cell cycle control, and size control
    • Robert L. Size sensors in bacteria, cell cycle control, and size control. Front. Microbiol. 2015, 6:515.
    • (2015) Front. Microbiol. , vol.6 , pp. 515
    • Robert, L.1
  • 23
    • 84860703985 scopus 로고    scopus 로고
    • Cell size control in yeast
    • Turner J.J., et al. Cell size control in yeast. Curr. Biol. 2012, 22:R350-R359.
    • (2012) Curr. Biol. , vol.22 , pp. R350-R359
    • Turner, J.J.1
  • 24
    • 84929347439 scopus 로고    scopus 로고
    • On being the right (cell) size
    • Ginzberg M.B., et al. On being the right (cell) size. Science 2015, 348:1245075.
    • (2015) Science , vol.348 , pp. 1245075
    • Ginzberg, M.B.1
  • 25
    • 67349103338 scopus 로고    scopus 로고
    • Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle
    • Martin S.G., Berthelot-Grosjean M. Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 2009, 459:852-856.
    • (2009) Nature , vol.459 , pp. 852-856
    • Martin, S.G.1    Berthelot-Grosjean, M.2
  • 26
    • 67349257405 scopus 로고    scopus 로고
    • A spatial gradient coordinates cell size and mitotic entry in fission yeast
    • Moseley J.B., et al. A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 2009, 459:857-860.
    • (2009) Nature , vol.459 , pp. 857-860
    • Moseley, J.B.1
  • 27
    • 84879940579 scopus 로고    scopus 로고
    • The bacterial Min system
    • Rowlett V.W., Margolin W. The bacterial Min system. Curr. Biol. 2013, 23:R553-R556.
    • (2013) Curr. Biol. , vol.23 , pp. R553-R556
    • Rowlett, V.W.1    Margolin, W.2
  • 28
    • 84886658431 scopus 로고    scopus 로고
    • Pom1 and cell size homeostasis in fission yeast
    • Wood E., Nurse P. Pom1 and cell size homeostasis in fission yeast. Cell Cycle 2013, 12:3228-3236.
    • (2013) Cell Cycle , vol.12 , pp. 3228-3236
    • Wood, E.1    Nurse, P.2
  • 29
    • 84898736425 scopus 로고    scopus 로고
    • Cortical regulation of cell size by a sizer cdr2p
    • Pan K.Z., et al. Cortical regulation of cell size by a sizer cdr2p. Elife 2014, 3:e02040.
    • (2014) Elife , vol.3 , pp. e02040
    • Pan, K.Z.1
  • 30
    • 75749097742 scopus 로고    scopus 로고
    • Measurement of mass, density, and volume during the cell cycle of yeast
    • Bryan A.K., et al. Measurement of mass, density, and volume during the cell cycle of yeast. Proc. Natl. Acad. Sci. U.S.A. 2009, 107:999-1004.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 999-1004
    • Bryan, A.K.1
  • 31
    • 0017660982 scopus 로고
    • Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division
    • Hartwell L.H., Unger M.W. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell Biol. 1977, 75:422-435.
    • (1977) J. Cell Biol. , vol.75 , pp. 422-435
    • Hartwell, L.H.1    Unger, M.W.2
  • 32
    • 0017581306 scopus 로고
    • Coordination of growth with cell division in the yeast Saccharomyces cerevisiae
    • Johnston G.C., et al. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 1977, 105:79-98.
    • (1977) Exp. Cell Res. , vol.105 , pp. 79-98
    • Johnston, G.C.1
  • 33
    • 0037452658 scopus 로고    scopus 로고
    • Conservation of mechanisms controlling entry into mitosis
    • Harvey S.L., Kellogg D.R. Conservation of mechanisms controlling entry into mitosis. Curr. Biol. 2003, 13:264-275.
    • (2003) Curr. Biol. , vol.13 , pp. 264-275
    • Harvey, S.L.1    Kellogg, D.R.2
  • 34
    • 34548168571 scopus 로고    scopus 로고
    • The effects of molecular noise and size control on variability in the budding yeast cell cycle
    • Di Talia S., et al. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 2007, 448:947-951.
    • (2007) Nature , vol.448 , pp. 947-951
    • Di Talia, S.1
  • 35
    • 84944243213 scopus 로고    scopus 로고
    • Dilution of the cell cycle inhibitor Whi5 controls budding yeast cell size
    • Schmoller K.M., et al. Dilution of the cell cycle inhibitor Whi5 controls budding yeast cell size. Nature 2015, 526:268-272.
    • (2015) Nature , vol.526 , pp. 268-272
    • Schmoller, K.M.1
  • 36
    • 0028268281 scopus 로고
    • Genes that can bypass the CLN requirement for Saccharomyces cerevisiae cell cycle START
    • Epstein C.B., Cross F.R. Genes that can bypass the CLN requirement for Saccharomyces cerevisiae cell cycle START. Mol. Cell. Biol. 1994, 14:2041-2047.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 2041-2047
    • Epstein, C.B.1    Cross, F.R.2
  • 37
    • 58549103915 scopus 로고    scopus 로고
    • Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast
    • Ferrezuelo F., et al. Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast. Cell Cycle 2014, 8:239-252.
    • (2014) Cell Cycle , vol.8 , pp. 239-252
    • Ferrezuelo, F.1
  • 38
    • 84878515115 scopus 로고    scopus 로고
    • Bck2 acts through the MADS box protein Mcm1 to activate cell-cycle-regulated genes in budding yeast
    • Bastajian N., et al. Bck2 acts through the MADS box protein Mcm1 to activate cell-cycle-regulated genes in budding yeast. PLoS Genet. 2013, 9:e1003507.
    • (2013) PLoS Genet. , vol.9 , pp. e1003507
    • Bastajian, N.1
  • 39
    • 0027173154 scopus 로고
    • Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins
    • Tyers M., et al. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 1993, 12:1955-1968.
    • (1993) EMBO J. , vol.12 , pp. 1955-1968
    • Tyers, M.1
  • 40
    • 0030450959 scopus 로고    scopus 로고
    • Cyclins and the wiring of the yeast cell cycle
    • Futcher B. Cyclins and the wiring of the yeast cell cycle. Yeast 1996, 12:1635-1646.
    • (1996) Yeast , vol.12 , pp. 1635-1646
    • Futcher, B.1
  • 41
    • 70349770744 scopus 로고    scopus 로고
    • Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets
    • Wang H., et al. Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets. PLoS Biol. 2009, 7:e1000189.
    • (2009) PLoS Biol. , vol.7 , pp. e1000189
    • Wang, H.1
  • 42
    • 34249828941 scopus 로고    scopus 로고
    • Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry
    • Vergés E., et al. Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry. Mol. Cell 2007, 26:649-662.
    • (2007) Mol. Cell , vol.26 , pp. 649-662
    • Vergés, E.1
  • 43
    • 84892363902 scopus 로고    scopus 로고
    • A Whi7-anchored loop controls the G1 Cdk-cyclin complex at Start
    • Yahya G., et al. A Whi7-anchored loop controls the G1 Cdk-cyclin complex at Start. Mol. Cell 2014, 53:115-126.
    • (2014) Mol. Cell , vol.53 , pp. 115-126
    • Yahya, G.1
  • 44
    • 2942739030 scopus 로고    scopus 로고
    • CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast
    • Costanzo M., et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 2004, 117:899-913.
    • (2004) Cell , vol.117 , pp. 899-913
    • Costanzo, M.1
  • 45
    • 2942755857 scopus 로고    scopus 로고
    • Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5
    • De Bruin R.A.M., et al. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 2004, 117:887-898.
    • (2004) Cell , vol.117 , pp. 887-898
    • De Bruin, R.A.M.1
  • 46
    • 80051720034 scopus 로고    scopus 로고
    • Distinct interactions select and maintain a specific cell fate
    • Doncic A., et al. Distinct interactions select and maintain a specific cell fate. Mol. Cell 2011, 43:528-539.
    • (2011) Mol. Cell , vol.43 , pp. 528-539
    • Doncic, A.1
  • 47
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman P.T., et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 1998, 9:3273-3297.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 49
    • 84946485961 scopus 로고    scopus 로고
    • Coordinating cell cycle remodeling with transcriptional activation at the Drosophila MBT
    • Blythe S.A., Wieschaus E.F. Coordinating cell cycle remodeling with transcriptional activation at the Drosophila MBT. Curr. Top. Dev. Biol. 2015, 113:113-148.
    • (2015) Curr. Top. Dev. Biol. , vol.113 , pp. 113-148
    • Blythe, S.A.1    Wieschaus, E.F.2
  • 50
    • 0020460737 scopus 로고
    • A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription
    • Newport J., Kirschner M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 1982, 30:687-696.
    • (1982) Cell , vol.30 , pp. 687-696
    • Newport, J.1    Kirschner, M.2
  • 51
    • 84924322573 scopus 로고    scopus 로고
    • Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition
    • Amodeo A.A., et al. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E1086-E1095.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E1086-E1095
    • Amodeo, A.A.1
  • 52
    • 77952254077 scopus 로고    scopus 로고
    • A general lack of compensation for gene dosage in yeast
    • Springer M., et al. A general lack of compensation for gene dosage in yeast. Mol. Syst. Biol. 2010, 6:368.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 368
    • Springer, M.1
  • 53
    • 84923120374 scopus 로고    scopus 로고
    • Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast
    • Dephoure N., et al. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. Elife 2014, 3:e03023.
    • (2014) Elife , vol.3 , pp. e03023
    • Dephoure, N.1
  • 54
    • 10344222155 scopus 로고    scopus 로고
    • How cells coordinate growth and division
    • Jorgensen P., Tyers M. How cells coordinate growth and division. Curr. Biol. 2004, 14:R1014-R1027.
    • (2004) Curr. Biol. , vol.14 , pp. R1014-R1027
    • Jorgensen, P.1    Tyers, M.2
  • 55
    • 78449268845 scopus 로고    scopus 로고
    • Interdependence of cell growth and gene expression: origins and consequences
    • Scott M., et al. Interdependence of cell growth and gene expression: origins and consequences. Science 2010, 330:1099-1102.
    • (2010) Science , vol.330 , pp. 1099-1102
    • Scott, M.1
  • 56
    • 84893398632 scopus 로고    scopus 로고
    • Bacterial growth: global effects on gene expression, growth feedback and proteome partition
    • Klumpp S., Hwa T. Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr. Opin. Biotechnol. 2014, 28:96-102.
    • (2014) Curr. Opin. Biotechnol. , vol.28 , pp. 96-102
    • Klumpp, S.1    Hwa, T.2
  • 57
    • 84923658662 scopus 로고    scopus 로고
    • Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria
    • Hui S., et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 2015, 11:784.
    • (2015) Mol. Syst. Biol. , vol.11 , pp. 784
    • Hui, S.1
  • 58
    • 84889244978 scopus 로고    scopus 로고
    • Promoters maintain their relative activity levels under different growth conditions
    • Keren L., et al. Promoters maintain their relative activity levels under different growth conditions. Mol. Syst. Biol. 2013, 9:701.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 701
    • Keren, L.1
  • 59
    • 0018287587 scopus 로고
    • Regulation of RNA synthesis in yeast. III. Synthesis during the cell cycle
    • Elliott S.G., McLaughlin C.S. Regulation of RNA synthesis in yeast. III. Synthesis during the cell cycle. Mol. Gen. Genet. 1979, 169:237-243.
    • (1979) Mol. Gen. Genet. , vol.169 , pp. 237-243
    • Elliott, S.G.1    McLaughlin, C.S.2
  • 60
    • 84867727061 scopus 로고    scopus 로고
    • Coordinating genome expression with cell size
    • Marguerat S., Bahler J. Coordinating genome expression with cell size. Trends Genet. 2012, 28:560-565.
    • (2012) Trends Genet. , vol.28 , pp. 560-565
    • Marguerat, S.1    Bahler, J.2
  • 61
    • 33947595865 scopus 로고
    • The nucleic acids in a polyploid series of Saccharomyces
    • Ogur M., et al. The nucleic acids in a polyploid series of Saccharomyces. Arch. Biochem. Biophys. 1952, 40:175-184.
    • (1952) Arch. Biochem. Biophys. , vol.40 , pp. 175-184
    • Ogur, M.1
  • 62
    • 55249096894 scopus 로고    scopus 로고
    • Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
    • De Godoy L.M.F., et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 2008, 455:1251-1254.
    • (2008) Nature , vol.455 , pp. 1251-1254
    • De Godoy, L.M.F.1
  • 63
    • 0033538465 scopus 로고    scopus 로고
    • Ploidy regulation of gene expression
    • Galitski T. Ploidy regulation of gene expression. Science 1999, 285:251-254.
    • (1999) Science , vol.285 , pp. 251-254
    • Galitski, T.1
  • 64
    • 78649953250 scopus 로고    scopus 로고
    • Control of transcription by cell size
    • Wu C-Y., et al. Control of transcription by cell size. PLoS Biol. 2010, 8:e1000523.
    • (2010) PLoS Biol. , vol.8 , pp. e1000523
    • Wu, C.-Y.1
  • 65
    • 0018397193 scopus 로고
    • Synthesis of ribosomal proteins during the cell cycle of the yeast Saccharomyces cerevisiae
    • Elliott S.G., et al. Synthesis of ribosomal proteins during the cell cycle of the yeast Saccharomyces cerevisiae. J. Bacteriol. 1979, 137:1048-1050.
    • (1979) J. Bacteriol. , vol.137 , pp. 1048-1050
    • Elliott, S.G.1
  • 66
    • 0041695213 scopus 로고    scopus 로고
    • Growth during the cell cycle
    • Mitchison J.M. Growth during the cell cycle. Int. Rev. Cytol. 2003, 226:165-258.
    • (2003) Int. Rev. Cytol. , vol.226 , pp. 165-258
    • Mitchison, J.M.1
  • 67
    • 0018120541 scopus 로고
    • Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae
    • Elliott S.G., McLaughlin C.S. Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1978, 75:4384-4388.
    • (1978) Proc. Natl. Acad. Sci. U.S.A. , vol.75 , pp. 4384-4388
    • Elliott, S.G.1    McLaughlin, C.S.2
  • 68
    • 67650430047 scopus 로고    scopus 로고
    • Cell growth and size homeostasis in proliferating animal cells
    • Tzur A., et al. Cell growth and size homeostasis in proliferating animal cells. Science 2009, 325:167-171.
    • (2009) Science , vol.325 , pp. 167-171
    • Tzur, A.1
  • 69
    • 77952112749 scopus 로고    scopus 로고
    • Using buoyant mass to measure the growth of single cells
    • Godin M., et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 2010, 7:387-390.
    • (2010) Nat. Methods , vol.7 , pp. 387-390
    • Godin, M.1
  • 70
    • 84922359470 scopus 로고    scopus 로고
    • A constant size extension drives bacterial cell size homeostasis
    • Campos M., et al. A constant size extension drives bacterial cell size homeostasis. Cell 2014, 159:1433-1446.
    • (2014) Cell , vol.159 , pp. 1433-1446
    • Campos, M.1
  • 72
    • 84922382554 scopus 로고    scopus 로고
    • Cell-size control and homeostasis in bacteria
    • Taheri-Araghi S., et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 2015, 25:385-391.
    • (2015) Curr. Biol. , vol.25 , pp. 385-391
    • Taheri-Araghi, S.1
  • 73
    • 78650442826 scopus 로고    scopus 로고
    • Connecting variability in global transcription rate to mitochondrial variability
    • Das Neves R.P., et al. Connecting variability in global transcription rate to mitochondrial variability. PLoS Biol. 2010, 8:e1000560.
    • (2010) PLoS Biol. , vol.8 , pp. e1000560
    • Das Neves, R.P.1
  • 74
    • 84929660832 scopus 로고    scopus 로고
    • Global variability in gene expression and alternative splicing is modulated by mitochondrial content
    • Guantes R., et al. Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res. 2015, 25:633-644.
    • (2015) Genome Res. , vol.25 , pp. 633-644
    • Guantes, R.1
  • 75
    • 84874782851 scopus 로고    scopus 로고
    • An algorithm to automate yeast segmentation and tracking
    • Doncic A., et al. An algorithm to automate yeast segmentation and tracking. PLoS ONE 2013, 8:e57970.
    • (2013) PLoS ONE , vol.8 , pp. e57970
    • Doncic, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.