-
1
-
-
84925283516
-
Cisplatin and gemcitabine as the first line therapy in metastatic triple negative breast cancer
-
COI: 1:CAS:528:DC%2BC2cXosV2mtbY%3D, PID: 24824628
-
Zhang J, Wang Z, Hu X, Wang B, Wang L, Yang W, et al. Cisplatin and gemcitabine as the first line therapy in metastatic triple negative breast cancer. Int J Cancer. 2015;136(1):204–11. doi:10.1002/ijc.28966.
-
(2015)
Int J Cancer
, vol.136
, Issue.1
, pp. 204-211
-
-
Zhang, J.1
Wang, Z.2
Hu, X.3
Wang, B.4
Wang, L.5
Yang, W.6
-
2
-
-
84933500899
-
Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial
-
COI: 1:CAS:528:DC%2BC2MXkvVWgsLs%3D, PID: 25795409
-
Hu XC, Zhang J, Xu BH, Cai L, Ragaz J, Wang ZH, et al. Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2015;16(4):436–46. doi:10.1016/S1470-2045(15)70064-1.
-
(2015)
Lancet Oncol
, vol.16
, Issue.4
, pp. 436-446
-
-
Hu, X.C.1
Zhang, J.2
Xu, B.H.3
Cai, L.4
Ragaz, J.5
Wang, Z.H.6
-
3
-
-
33745686698
-
Cellular pharmacology of gemcitabine
-
PID: 16807468
-
Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17 Suppl 5:v7–v12. doi:10.1093/annonc/mdj941.
-
(2006)
Ann Oncol
, vol.17
, pp. v7-v12
-
-
Mini, E.1
Nobili, S.2
Caciagli, B.3
Landini, I.4
Mazzei, T.5
-
4
-
-
0036462584
-
Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine)
-
COI: 1:CAS:528:DC%2BD38XoslSqtb8%3D, PID: 12127861
-
Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat. 2002;5(1):19–33.
-
(2002)
Drug Resist Updat
, vol.5
, Issue.1
, pp. 19-33
-
-
Bergman, A.M.1
Pinedo, H.M.2
Peters, G.J.3
-
5
-
-
70350635407
-
Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions
-
COI: 1:CAS:528:DC%2BD1MXhtVWjt7jM, PID: 19214867
-
Andersson R, Aho U, Nilsson BI, Peters GJ, Pastor-Anglada M, Rasch W, et al. Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scand J Gastroenterol. 2009;44(7):782–6. doi:10.1080/00365520902745039.
-
(2009)
Scand J Gastroenterol
, vol.44
, Issue.7
, pp. 782-786
-
-
Andersson, R.1
Aho, U.2
Nilsson, B.I.3
Peters, G.J.4
Pastor-Anglada, M.5
Rasch, W.6
-
6
-
-
40949143108
-
Gemcitabine resistance in pancreatic cancer: picking the key players
-
COI: 1:CAS:528:DC%2BD1cXislSku7k%3D, PID: 18316544
-
Kim MP, Gallick GE. Gemcitabine resistance in pancreatic cancer: picking the key players. Clin Cancer Res. 2008;14(5):1284–5. doi:10.1158/1078-0432.CCR-07-2247.
-
(2008)
Clin Cancer Res
, vol.14
, Issue.5
, pp. 1284-1285
-
-
Kim, M.P.1
Gallick, G.E.2
-
7
-
-
77956868652
-
Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells
-
COI: 1:CAS:528:DC%2BC3cXhtFGmtrfL, PID: 20824050
-
Hagmann W, Jesnowski R, Lohr JM. Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia. 2010;12(9):740–7.
-
(2010)
Neoplasia
, vol.12
, Issue.9
, pp. 740-747
-
-
Hagmann, W.1
Jesnowski, R.2
Lohr, J.M.3
-
8
-
-
2542530631
-
An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines
-
COI: 1:CAS:528:DC%2BD2cXksVKgurk%3D, PID: 15172981
-
Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA. An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res. 2004;64(11):3761–6. doi:10.1158/0008-5472.CAN-03-3363.
-
(2004)
Cancer Res
, vol.64
, Issue.11
, pp. 3761-3766
-
-
Davidson, J.D.1
Ma, L.2
Flagella, M.3
Geeganage, S.4
Gelbert, L.M.5
Slapak, C.A.6
-
9
-
-
34447137381
-
An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients
-
COI: 1:CAS:528:DC%2BD2sXosF2gs7w%3D, PID: 17602053
-
Rha SY, Jeung HC, Choi YH, Yang WI, Yoo JH, Kim BS, et al. An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients. Oncologist. 2007;12(6):622–30. doi:10.1634/theoncologist.12-6-622.
-
(2007)
Oncologist
, vol.12
, Issue.6
, pp. 622-630
-
-
Rha, S.Y.1
Jeung, H.C.2
Choi, Y.H.3
Yang, W.I.4
Yoo, J.H.5
Kim, B.S.6
-
10
-
-
84942892251
-
Cytidine deaminase axis modulated by miR-484 differentially regulates cell proliferation and chemoresistance in breast cancer
-
COI: 1:CAS:528:DC%2BC2MXlsleisb0%3D, PID: 25643696
-
Ye FG, Song CG, Cao ZG, Xia C, Chen DN, Chen L, et al. Cytidine deaminase axis modulated by miR-484 differentially regulates cell proliferation and chemoresistance in breast cancer. Cancer Res. 2015;75(7):1504–15. doi:10.1158/0008-5472.CAN-14-2341.
-
(2015)
Cancer Res
, vol.75
, Issue.7
, pp. 1504-1515
-
-
Ye, F.G.1
Song, C.G.2
Cao, Z.G.3
Xia, C.4
Chen, D.N.5
Chen, L.6
-
11
-
-
84907153402
-
Liver kinase B1 enhances chemoresistance to gemcitabine in breast cancer MDA-MB-231 cells
-
PID: 25295095
-
Xia C, Ye F, Hu X, Li Z, Jiang B, Fu Y, et al. Liver kinase B1 enhances chemoresistance to gemcitabine in breast cancer MDA-MB-231 cells. Oncol Lett. 2014;8(5):2086–92. doi:10.3892/ol.2014.2446.
-
(2014)
Oncol Lett
, vol.8
, Issue.5
, pp. 2086-2092
-
-
Xia, C.1
Ye, F.2
Hu, X.3
Li, Z.4
Jiang, B.5
Fu, Y.6
-
12
-
-
33646407273
-
Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival
-
COI: 1:CAS:528:DC%2BD28XjvValurY%3D, PID: 16638857
-
Sebastiani V, Ricci F, Rubio-Viqueira B, Kulesza P, Yeo CJ, Hidalgo M, et al. Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival. Clin Cancer Res. 2006;12(8):2492–7. doi:10.1158/1078-0432.CCR-05-2655.
-
(2006)
Clin Cancer Res
, vol.12
, Issue.8
, pp. 2492-2497
-
-
Sebastiani, V.1
Ricci, F.2
Rubio-Viqueira, B.3
Kulesza, P.4
Yeo, C.J.5
Hidalgo, M.6
-
13
-
-
4644309196
-
The functions of animal microRNAs
-
COI: 1:CAS:528:DC%2BD2cXnsFaiu7g%3D, PID: 15372042
-
Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. doi:10.1038/nature02871.
-
(2004)
Nature
, vol.431
, Issue.7006
, pp. 350-355
-
-
Ambros, V.1
-
14
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
COI: 1:CAS:528:DC%2BD2cXhtVals7o%3D, PID: 14744438
-
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
-
(2004)
Cell
, vol.116
, Issue.2
, pp. 281-297
-
-
Bartel, D.P.1
-
15
-
-
84921290726
-
Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer
-
COI: 1:CAS:528:DC%2BC2MXhtlCrsb4%3D, PID: 25563894
-
Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets. 2015;19(2):285–97. doi:10.1517/14728222.2014.975794.
-
(2015)
Expert Opin Ther Targets
, vol.19
, Issue.2
, pp. 285-297
-
-
Garg, M.1
-
16
-
-
77957969261
-
Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance
-
COI: 1:CAS:528:DC%2BC3cXhtlSmsb3P, PID: 20692200
-
Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, et al. Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat. 2010;13(4-5):109–18. doi:10.1016/j.drup.2010.07.001.
-
(2010)
Drug Resist Updat
, vol.13
, Issue.4-5
, pp. 109-118
-
-
Wang, Z.1
Li, Y.2
Ahmad, A.3
Azmi, A.S.4
Kong, D.5
Banerjee, S.6
-
17
-
-
84878662313
-
miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma
-
COI: 1:CAS:528:DC%2BC3sXmtVWqsb0%3D, PID: 23478189
-
Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013;210(4):789–803. doi:10.1084/jem.20120153.
-
(2013)
J Exp Med
, vol.210
, Issue.4
, pp. 789-803
-
-
Tao, Z.H.1
Wan, J.L.2
Zeng, L.Y.3
Xie, L.4
Sun, H.C.5
Qin, L.X.6
-
18
-
-
84883479886
-
AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression
-
COI: 1:CAS:528:DC%2BC3sXhtlKkurfP, PID: 23811941
-
Shi Z, Zhang J, Qian X, Han L, Zhang K, Chen L, et al. AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Res. 2013;73(17):5519–31. doi:10.1158/0008-5472.CAN-13-0280.
-
(2013)
Cancer Res
, vol.73
, Issue.17
, pp. 5519-5531
-
-
Shi, Z.1
Zhang, J.2
Qian, X.3
Han, L.4
Zhang, K.5
Chen, L.6
-
19
-
-
84890227134
-
Chemoresistance to gemcitabine in hepatoma cells induces epithelial-mesenchymal transition and involves activation of PDGF-D pathway
-
PID: 24158561
-
Wu Q, Wang R, Yang Q, Hou X, Chen S, Hou Y, et al. Chemoresistance to gemcitabine in hepatoma cells induces epithelial-mesenchymal transition and involves activation of PDGF-D pathway. Oncotarget. 2013;4(11):1999–2009.
-
(2013)
Oncotarget
, vol.4
, Issue.11
, pp. 1999-2009
-
-
Wu, Q.1
Wang, R.2
Yang, Q.3
Hou, X.4
Chen, S.5
Hou, Y.6
-
20
-
-
38049115129
-
Endogenous human microRNAs that suppress breast cancer metastasis
-
COI: 1:CAS:528:DC%2BD1cXksVGhuw%3D%3D, PID: 18185580
-
Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52. doi:10.1038/nature06487.
-
(2008)
Nature
, vol.451
, Issue.7175
, pp. 147-152
-
-
Tavazoie, S.F.1
Alarcon, C.2
Oskarsson, T.3
Padua, D.4
Wang, Q.5
Bos, P.D.6
-
21
-
-
34247495591
-
miR-21-mediated tumor growth
-
COI: 1:CAS:528:DC%2BD2sXksF2rsb4%3D, PID: 17072344
-
Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799–803. doi:10.1038/sj.onc.1210083.
-
(2007)
Oncogene
, vol.26
, Issue.19
, pp. 2799-2803
-
-
Si, M.L.1
Zhu, S.2
Wu, H.3
Lu, Z.4
Wu, F.5
Mo, Y.Y.6
-
22
-
-
84880506510
-
MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways
-
COI: 1:CAS:528:DC%2BC3sXptlGms7w%3D, PID: 23684551
-
Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, et al. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett. 2013;337(2):226–36. doi:10.1016/j.canlet.2013.05.007.
-
(2013)
Cancer Lett
, vol.337
, Issue.2
, pp. 226-236
-
-
Bao, L.1
Yan, Y.2
Xu, C.3
Ji, W.4
Shen, S.5
Xu, G.6
-
23
-
-
84896391054
-
The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer
-
COI: 1:CAS:528:DC%2BC2cXis1Crtbw%3D, PID: 24472409
-
Chan JK, Blansit K, Kiet T, Sherman A, Wong G, Earle C, et al. The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol. 2014;132(3):739–44. doi:10.1016/j.ygyno.2014.01.034.
-
(2014)
Gynecol Oncol
, vol.132
, Issue.3
, pp. 739-744
-
-
Chan, J.K.1
Blansit, K.2
Kiet, T.3
Sherman, A.4
Wong, G.5
Earle, C.6
-
24
-
-
84876312892
-
miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN
-
COI: 1:CAS:528:DC%2BC3sXmtV2lsbg%3D, PID: 23466500
-
Yang SM, Huang C, Li XF, Yu MZ, He Y, Li J. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology. 2013;306:162–8. doi:10.1016/j.tox.2013.02.014.
-
(2013)
Toxicology
, vol.306
, pp. 162-168
-
-
Yang, S.M.1
Huang, C.2
Li, X.F.3
Yu, M.Z.4
He, Y.5
Li, J.6
-
25
-
-
84892888388
-
MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer
-
PID: 24331411
-
Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014;83(2):146–53. doi:10.1016/j.lungcan.2013.11.003.
-
(2014)
Lung Cancer
, vol.83
, Issue.2
, pp. 146-153
-
-
Li, B.1
Ren, S.2
Li, X.3
Wang, Y.4
Garfield, D.5
Zhou, S.6
-
26
-
-
79956313718
-
Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer
-
COI: 1:CAS:528:DC%2BC3MXmtlGlu7k%3D, PID: 21471222
-
Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286(21):19127–37. doi:10.1074/jbc.M110.216887.
-
(2011)
J Biol Chem
, vol.286
, Issue.21
, pp. 19127-19137
-
-
Gong, C.1
Yao, Y.2
Wang, Y.3
Liu, B.4
Wu, W.5
Chen, J.6
-
27
-
-
84878110643
-
The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL
-
COI: 1:CAS:528:DC%2BC3sXovVCgs7c%3D, PID: 23177026
-
Wang P, Zhuang L, Zhang J, Fan J, Luo J, Chen H, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol. 2013;7(3):334–45. doi:10.1016/j.molonc.2012.10.011.
-
(2013)
Mol Oncol
, vol.7
, Issue.3
, pp. 334-345
-
-
Wang, P.1
Zhuang, L.2
Zhang, J.3
Fan, J.4
Luo, J.5
Chen, H.6
-
28
-
-
84884535896
-
Cancer drug resistance: an evolving paradigm
-
COI: 1:CAS:528:DC%2BC3sXhsVyqurnE, PID: 24060863
-
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26. doi:10.1038/nrc3599.
-
(2013)
Nat Rev Cancer
, vol.13
, Issue.10
, pp. 714-726
-
-
Holohan, C.1
Van Schaeybroeck, S.2
Longley, D.B.3
Johnston, P.G.4
-
29
-
-
0344845003
-
Epithelial-mesenchymal transitions in development and pathologies
-
COI: 1:CAS:528:DC%2BD3sXptlyks7c%3D, PID: 14644200
-
Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15(6):740–6.
-
(2003)
Curr Opin Cell Biol
, vol.15
, Issue.6
, pp. 740-746
-
-
Thiery, J.P.1
-
30
-
-
70450198396
-
Epithelial-mesenchymal transitions in development and disease
-
COI: 1:CAS:528:DC%2BC3cXksFWltA%3D%3D, PID: 19945376
-
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. doi:10.1016/j.cell.2009.11.007.
-
(2009)
Cell
, vol.139
, Issue.5
, pp. 871-890
-
-
Thiery, J.P.1
Acloque, H.2
Huang, R.Y.3
Nieto, M.A.4
-
31
-
-
84862523863
-
Sequence analysis of mutations and translocations across breast cancer subtypes
-
Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;405–9. doi:10.1038/nature11154.
-
(2012)
Nature
, pp. 405-409
-
-
Banerji, S.1
Cibulskis, K.2
Rangel-Escareno, C.3
Brown, K.K.4
Carter, S.L.5
Frederick, A.M.6
-
32
-
-
77949794643
-
Epithelial to mesenchymal transition and breast cancer
-
PID: 19909494
-
Tomaskovic-Crook E, Thompson EW, Thiery JP. Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res. 2009;11(6):213. doi:10.1186/bcr2416.
-
(2009)
Breast Cancer Res
, vol.11
, Issue.6
, pp. 213
-
-
Tomaskovic-Crook, E.1
Thompson, E.W.2
Thiery, J.P.3
-
33
-
-
84890831249
-
MicroRNAs as critical regulators involved in regulating epithelial-mesenchymal transition
-
COI: 1:CAS:528:DC%2BC2cXitlahtA%3D%3D, PID: 24168189
-
Zhao X, Lu Y, Nie Y, Fan D. MicroRNAs as critical regulators involved in regulating epithelial-mesenchymal transition. Curr Cancer Drug Targets. 2013;13(9):935–44.
-
(2013)
Curr Cancer Drug Targets
, vol.13
, Issue.9
, pp. 935-944
-
-
Zhao, X.1
Lu, Y.2
Nie, Y.3
Fan, D.4
-
34
-
-
84873050284
-
Regulatory networks defining EMT during cancer initiation and progression
-
PID: 23344542
-
De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110. doi:10.1038/nrc3447.
-
(2013)
Nat Rev Cancer
, vol.13
, Issue.2
, pp. 97-110
-
-
De Craene, B.1
Berx, G.2
-
35
-
-
43049103824
-
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
-
COI: 1:CAS:528:DC%2BD1cXltl2is7c%3D, PID: 18376396
-
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. doi:10.1038/ncb1722.
-
(2008)
Nat Cell Biol
, vol.10
, Issue.5
, pp. 593-601
-
-
Gregory, P.A.1
Bert, A.G.2
Paterson, E.L.3
Barry, S.C.4
Tsykin, A.5
Farshid, G.6
-
36
-
-
84905510366
-
MicroRNA-21 identified as predictor of cancer outcome: a meta-analysis
-
PID: 25098165
-
Zhu W, Xu B. MicroRNA-21 identified as predictor of cancer outcome: a meta-analysis. PLoS One. 2014;9(8):e103373. doi:10.1371/journal.pone.0103373.
-
(2014)
PLoS One
, vol.9
, Issue.8
, pp. e103373
-
-
Zhu, W.1
Xu, B.2
-
37
-
-
84870469858
-
MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN
-
COI: 1:CAS:528:DC%2BC38XhslantLjO, PID: 22956424
-
Liu ZL, Wang H, Liu J, Wang ZX. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem. 2013;372(1-2):35–45. doi:10.1007/s11010-012-1443-3.
-
(2013)
Mol Cell Biochem
, vol.372
, Issue.1-2
, pp. 35-45
-
-
Liu, Z.L.1
Wang, H.2
Liu, J.3
Wang, Z.X.4
-
38
-
-
84917687070
-
MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of beta-catenin signaling
-
COI: 1:STN:280:DC%2BC2M%2Fos1Oiuw%3D%3D, PID: 25193986
-
Zhang JX, Mai SJ, Huang XX, Wang FW, Liao YJ, Lin MC, et al. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of beta-catenin signaling. Ann Oncol. 2014;25(11):2196–204. doi:10.1093/annonc/mdu439.
-
(2014)
Ann Oncol
, vol.25
, Issue.11
, pp. 2196-2204
-
-
Zhang, J.X.1
Mai, S.J.2
Huang, X.X.3
Wang, F.W.4
Liao, Y.J.5
Lin, M.C.6
-
39
-
-
79351468712
-
Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters
-
PID: 21284870
-
Li J, Zhou BP. Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer. 2011;11:49. doi:10.1186/1471-2407-11-49.
-
(2011)
BMC Cancer
, vol.11
, pp. 49
-
-
Li, J.1
Zhou, B.P.2
-
40
-
-
34249661591
-
Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity
-
COI: 1:CAS:528:DC%2BD2sXjvFagtr0%3D, PID: 17287208
-
Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, et al. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem. 2007;282(15):11221–9. doi:10.1074/jbc.M611871200.
-
(2007)
J Biol Chem
, vol.282
, Issue.15
, pp. 11221-11229
-
-
Fang, D.1
Hawke, D.2
Zheng, Y.3
Xia, Y.4
Meisenhelder, J.5
Nika, H.6
|