메뉴 건너뛰기




Volumn 468, Issue 2145, 2012, Pages 2630-2651

Statistical approach to normalization of feature vectors and clustering of mixed datasets

Author keywords

Clustering; Minkowski metrics; Normalization; Standardization; Statistics

Indexed keywords

CLUSTER ANALYSIS; STATISTICS;

EID: 84864999258     PISSN: 13645021     EISSN: 14712946     Source Type: Journal    
DOI: 10.1098/rspa.2011.0704     Document Type: Article
Times cited : (91)

References (34)
  • 1
    • 0035308429 scopus 로고    scopus 로고
    • Feature normalization and likelihood-based similarity measures for image retrieval
    • DOI 10.1016/S0167-8655(00)00112-4, PII S0167865500001124, Image/Video Indexing and Retrieval
    • Aksoy, S. & Haralick, R. M. 2001 Feature normalization and likelihood-based similarity measures for image retrieval. Pattern Recognit. Lett. 22, 563-582. (doi:10.1016/S0167-8655(00)00112-4) (Pubitemid 32376373)
    • (2001) Pattern Recognition Letters , vol.22 , Issue.5 , pp. 563-582
    • Aksoy, S.1    Haralick, R.M.2
  • 2
    • 80055024879 scopus 로고    scopus 로고
    • Minkowski metric, feature weighting and anomalous cluster initializing in K-means clustering
    • (doi:10.1016/ j.patcog.2011.08.012)
    • Amorim, R. C. & Mirkin, B. 2012 Minkowski metric, feature weighting and anomalous cluster initializing in K-means clustering. Pattern Recognit. 45, 1061-1075. (doi:10.1016/ j.patcog.2011.08.012)
    • (2012) Pattern Recognit. , vol.45 , pp. 1061-1075
    • Amorim, R.C.1    Mirkin, B.2
  • 3
    • 36948999941 scopus 로고    scopus 로고
    • University of California, CA: School of Information and Computer Science. See
    • Asuncion, A. & Newman, D. J. 2007 UCI Machine learning repository. University of California, CA: School of Information and Computer Science. See http://www.ics. uci.edu/mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository.
    • Asuncion, A.1    Newman, D.J.2
  • 4
    • 0034237933 scopus 로고    scopus 로고
    • A probabilistic clustering model for variables of mixed type
    • (doi:10.1023/A:1004759101388)
    • Bachner, J. 2000 A probabilistic clustering model for variables of mixed type. Qual. Quant. 34, 223-235. (doi:10.1023/A:1004759101388)
    • (2000) Qual. Quant. , vol.34 , pp. 223-235
    • Bachner, J.1
  • 5
    • 0018918224 scopus 로고
    • A convergence theorem for the Fuzzy ISODATA clustering algorithms
    • (doi:10.1109/TPAMI.1980.4766964)
    • Bezdek, J. C. 1980 A convergence theorem for the Fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2, 1-8. (doi:10.1109/TPAMI.1980.4766964)
    • (1980) IEEE Trans. Pattern Anal. Mach. Intell. , vol.2 , pp. 1-8
    • Bezdek, J.C.1
  • 6
    • 0030289011 scopus 로고    scopus 로고
    • Probabilistic models in cluster analysis
    • (doi:10.1016/0167-9473(96)88919-5)
    • Bock, H. H. 1996 Probabilistic models in cluster analysis. Comput. Stat. Data Anal. 23, 5-28. (doi:10.1016/0167-9473(96)88919-5)
    • (1996) Comput. Stat. Data Anal. , vol.23 , pp. 5-28
    • Bock, H.H.1
  • 9
    • 84865026600 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1-38. Doherty, K., Adams, R. & Davey, N. 2004 Non-Euclidean norms and data normalization
    • (ed. M. Verleysen), Bruges, Belgium, 28-30 April 2004,. Bruges, Belgium: D-side publications
    • Dempster, A., Laird, N. & Rubin, D. 1977 Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1-38. Doherty, K., Adams, R. & Davey, N. 2004 Non-Euclidean norms and data normalization. In Proc. 12th Euro. Symp. Artificial Neural Networks (ed. M. Verleysen), Bruges, Belgium, 28-30 April 2004, pp. 181-186. Bruges, Belgium: D-side publications.
    • (1977) Proc. 12th Euro. Symp. Artificial Neural Networks , pp. 181-186
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 10
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • (doi:10.1198/016214502760047131)
    • Fraley, C. & Raftery, A. E. 2002 Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611-631. (doi:10.1198/016214502760047131)
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 12
    • 0040379165 scopus 로고    scopus 로고
    • Weighting Quantitative and Qualitative Variables in Clustering Methods
    • Third Hispano-Polish Symposium on System Analysis and Computer Science
    • Gibert, K. & Cortés, U. 1997Weighing quantitative and qualitative variables in clustering methods. Mathware Soft Comput. 4, 251-266. (Pubitemid 128025484)
    • (1997) Mathware & soft computing , vol.4 , Issue.3 , pp. 251-266
    • Gibert, K.1    Cortes, U.2
  • 13
    • 0034298140 scopus 로고    scopus 로고
    • Generalized fuzzy c-means clustering strategies using Lp norm distances
    • (doi:10.1109/91.873580)
    • Hathaway, R. J., Bezdek, J. C. & Hu, Y.-K. 2000 Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Trans. Fuzzy Syst. 8, 576-582. (doi:10.1109/91.873580)
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , pp. 576-582
    • Hathaway, R.J.1    Bezdek, J.C.2    Hu, Y.-K.3
  • 16
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang, Z. 1998 Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowl. Discov. 2, 283-304. (doi:10.1023/A:1009769707641) (Pubitemid 128695480)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 22
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley, CA: University of California Press. See
    • MacQueen, J. B. 1967 Some methods for classification and analysis of multivariate observations. In Proc. 5th Berkeley Symp. Math. Stat. Probab., pp. 281-297. Berkeley, CA: University of California Press. See http://projecteuclid. org/DPubS?service=UI&version=1.0& verb=Display&handle=euclid.bsmsp/ 1200512992.
    • (1967) Proc. 5th Berkeley Symp. Math. Stat. Probab. , pp. 281-297
    • MacQueen, J.B.1
  • 23
    • 0020783239 scopus 로고
    • Automated construction of classifications: Conceptual clustering versus numerical taxonomy
    • (doi:10.1109/TPAMI.1983.4767409)
    • Michalski, R. S. & Stepp, R. E. 1983 Automated construction of classifications: Conceptual clustering versus numerical taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 5, 396-410. (doi:10.1109/TPAMI.1983.4767409)
    • (1983) IEEE Trans. Pattern Anal. Mach. Intell. , vol.5 , pp. 396-410
    • Michalski, R.S.1    Stepp, R.E.2
  • 24
    • 0000235019 scopus 로고
    • A study of variable standardization in cluster analysis
    • (doi:10.1007/BF01897163)
    • Milligan, G. W. & Cooper, M. C. 1988 A study of variable standardization in cluster analysis. J. Classif. 5, 181-204. (doi:10.1007/BF01897163)
    • (1988) J. Classif. , vol.5 , pp. 181-204
    • Milligan, G.W.1    Cooper, M.C.2
  • 26
    • 26944460703 scopus 로고    scopus 로고
    • L1 and L2 approximation clustering for mixed data: Scatter decompositions and algorithms L1
    • Mirkin, B. 1997 L1 and L2 approximation clustering for mixed data: Scatter decompositions and algorithms L1. Stat. Proc. Related Top. 31, 473-486.
    • (1997) Stat. Proc. Related Top. , vol.31 , pp. 473-486
    • Mirkin, B.1
  • 27
    • 0032258611 scopus 로고    scopus 로고
    • Least-squares structuring, clustering, and data processing issues
    • (doi:10.1093/comjnl/41.8.518)
    • Mirkin, B. 1998 Least-squares structuring, clustering, and data processing issues. Comput. J. 41, 518-536. (doi:10.1093/comjnl/41.8.518)
    • (1998) Comput. J. , vol.41 , pp. 518-536
    • Mirkin, B.1
  • 28
    • 84864968483 scopus 로고    scopus 로고
    • Clustering for data mining: A data recovery approach. Boca Raton FL: Chapman and Hall/CRC. Miyamoto, S. & Agusta, Y. 1998 Algorithms for L1 and Lp fuzzy c-means and their convergence
    • (eds C. Hayashi, N. Ohsumi, K. Yajima, Y. Tamaka, H. H. Bock & Y. Baba),. Tokyo, Japan: Springer
    • Mirkin, B. 2005 Clustering for data mining: A data recovery approach. Boca Raton FL: Chapman and Hall/CRC. Miyamoto, S. & Agusta, Y. 1998 Algorithms for L1 and Lp fuzzy c-means and their convergence. In Studies in classification, data analysis, and knowledge organization; data science, classification, and related Methods (eds C. Hayashi, N. Ohsumi, K. Yajima, Y. Tamaka, H. H. Bock & Y. Baba), pp. 295-302. Tokyo, Japan: Springer.
    • (2005) Studies in Classification, Data Analysis, and Knowledge Organization; Data Science, Classification, and Related Methods , pp. 295-302
    • Mirkin, B.1
  • 30
    • 80051772189 scopus 로고    scopus 로고
    • Random search with k-prototypes algorithm for clustering mixed datasets
    • (doi:10.1098/ rspa.2010.0594)
    • Pham, D.-T., Suarez-Alvarez, M. M. & Prostov, Y. I. 2011 Random search with k-prototypes algorithm for clustering mixed datasets. Proc. R. Soc. A 467, 2387-2403. (doi:10.1098/ rspa.2010.0594)
    • (2011) Proc. R. Soc. A , vol.467 , pp. 2387-2403
    • Pham, D.-T.1    Suarez-Alvarez, M.M.2    Prostov, Y.I.3
  • 31
    • 0029415780 scopus 로고
    • A conceptual version of the K-means algorithm
    • DOI 10.1016/0167-8655(95)00075-R
    • Ralambondrainy, H. 1995 A conceptual version of the K-means algorithm. Pattern Recognit. Lett. 16, 1147-1157. (doi:10.1016/0167-8655(95)00075-R) (Pubitemid 26442196)
    • (1995) Pattern Recognition Letters , vol.16 , Issue.11 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 32
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • (doi:10.2307/2284239)
    • Rand, W. M. 1971 Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850. (doi:10.2307/2284239)
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.