메뉴 건너뛰기




Volumn 5, Issue 3, 2010, Pages 280-291

Extreme data mining: Inference from small datasets

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77956245661     PISSN: 18419836     EISSN: 18419844     Source Type: Journal    
DOI: 10.15837/ijccc.2010.3.2481     Document Type: Article
Times cited : (49)

References (45)
  • 2
    • 40949126936 scopus 로고    scopus 로고
    • A genetic algorithm optimized fuzzy neural network analysis of the affinity of inhibitors for HIV-1 protease
    • L. Fabry-Asztalos, R. Andonie, C. Collar, S. Abdul-Wahid, and N. Salim, "A genetic algorithm optimized fuzzy neural network analysis of the affinity of inhibitors for HIV-1 protease," Bioorganic and Medicinal Chemistry, vol. 16, pp. 2903-2911, 2008.
    • (2008) Bioorganic and Medicinal Chemistry , vol.16 , pp. 2903-2911
    • Fabry-Asztalos, L.1    Andonie, R.2    Collar, C.3    Abdul-Wahid, S.4    Salim, N.5
  • 5
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
    • G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 698-713, 1992.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.H.4    Rosen, D.B.5
  • 12
    • 77956241395 scopus 로고    scopus 로고
    • Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, Switzerland, invited talk, September
    • R. Andonie, "How to learn from small training sets," Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, Switzerland, invited talk, September 2009.
    • (2009) How to learn from small training sets
    • Andonie, R.1
  • 14
    • 0022895406 scopus 로고
    • Sets with small generalized Kolmogorov complexity
    • J. L. Balcázar and R. V. Book, "Sets with small generalized Kolmogorov complexity," Acta Inf., vol. 23, no. 6, pp. 679-688, 1986.
    • (1986) Acta Inf. , vol.23 , Issue.6 , pp. 679-688
    • Balcázar, J.L.1    Book, R.V.2
  • 17
    • 0032022729 scopus 로고    scopus 로고
    • Neural-network design for small training sets of high dimension
    • J.-L. Yuan and T. Fine, "Neural-network design for small training sets of high dimension," IEEE Tnansactions on Neural Networks, vol. 9, pp. 266-280, 1998.
    • (1998) IEEE Tnansactions on Neural Networks , vol.9 , pp. 266-280
    • Yuan, J.-L.1    Fine, T.2
  • 21
    • 33748743279 scopus 로고    scopus 로고
    • Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge
    • T. T.-I., and L. Y.-S.
    • D.-C. Li, C.-S. Wu, T. T.-I., and L. Y.-S., "Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge," Computers and Operations Research, vol. 34, pp. 966-982, 2007.
    • (2007) Computers and Operations Research , vol.34 , pp. 966-982
    • Li, D.-C.1    Wu, C.-S.2
  • 23
    • 27344432371 scopus 로고    scopus 로고
    • Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge
    • D.-C. Li, C.-S. Wu, T.-I. Tsai, and F. M. Chang, "Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge," Comput. Oper. Res., vol. 33, no. 6, pp. 1857-1869, 2006.
    • (2006) Comput. Oper. Res. , vol.33 , Issue.6 , pp. 1857-1869
    • Li, D.-C.1    Wu, C.-S.2    Tsai, T.-I.3    Chang, F.M.4
  • 24
    • 34248545085 scopus 로고    scopus 로고
    • Approximate modeling for high order non-linear functions using small sample sets
    • T.-I. Tsai and D.-C. Li, "Approximate modeling for high order non-linear functions using small sample sets," Expert Syst. Appl., vol. 34, no. 1, pp. 564-569, 2008.
    • (2008) Expert Syst. Appl. , vol.34 , Issue.1 , pp. 564-569
    • Tsai, T.-I.1    Li, D.-C.2
  • 25
    • 34248571379 scopus 로고    scopus 로고
    • A non-parametric learning algorithm for small manufacturing data sets
    • D.-C. Li and C.-W. Yeh, "A non-parametric learning algorithm for small manufacturing data sets," Expert Syst. Appl., vol. 34, no. 1, pp. 391-398, 2008.
    • (2008) Expert Syst. Appl. , vol.34 , Issue.1 , pp. 391-398
    • Li, D.-C.1    Yeh, C.-W.2
  • 26
    • 64049110475 scopus 로고    scopus 로고
    • A neural network weight determination model designed uniquely for small data set learning
    • D.-C. Li and C.-W. Liu, "A neural network weight determination model designed uniquely for small data set learning," Expert Syst. Appl., vol. 36, no. 6, pp. 9853-9858, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.6 , pp. 9853-9858
    • Li, D.-C.1    Liu, C.-W.2
  • 27
    • 0027513960 scopus 로고
    • Application of neural networks in structure-activity relationships of a small number of molecules
    • I. V. Tetko, A. I. Luik, and G. I. Poda, "Application of neural networks in structure-activity relationships of a small number of molecules," J. Med. Chem., vol. 36, pp. 811-814, 1993.
    • (1993) J. Med. Chem. , vol.36 , pp. 811-814
    • Tetko, I.V.1    Luik, A.I.2    Poda, G.I.3
  • 33
    • 0033333990 scopus 로고
    • Training neural networks with additive noise in the desired signal
    • C. Wang and J. C. Principe, "Training neural networks with additive noise in the desired signal," IEEE Transactions on Neural Networks, vol. 10, pp. 1511-1517, 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.10 , pp. 1511-1517
    • Wang, C.1    Principe, J.C.2
  • 34
    • 57649121303 scopus 로고    scopus 로고
    • An expanded training set based validation method to avoid overfitting for neural network classifier
    • K. Wang, J. Yang, G. Shi, and Q. Wang, "An expanded training set based validation method to avoid overfitting for neural network classifier," International Conference on Natural Computation, vol. 3, pp. 83-87, 2008.
    • (2008) International Conference on Natural Computation , vol.3 , pp. 83-87
    • Wang, K.1    Yang, J.2    Shi, G.3    Wang, Q.4
  • 35
    • 0034271110 scopus 로고    scopus 로고
    • On overfitting, generalization, and randomly expanded training sets
    • G. N. Karystinos and D. A. Pados, "On overfitting, generalization, and randomly expanded training sets," IEEE Transactions on Neural Networks, vol. 5, pp. 1050-1057, 2000.
    • (2000) IEEE Transactions on Neural Networks , vol.5 , pp. 1050-1057
    • Karystinos, G.N.1    Pados, D.A.2
  • 36
    • 49149099084 scopus 로고    scopus 로고
    • Optimized approximation algorithm in neural networks without overfitting
    • Y. Liu, J. A. Starzyk, and Z. Zhu, "Optimized approximation algorithm in neural networks without overfitting," IEEE Transactions on Neural Networks, vol. 19, no. 6, pp. 983-995, 2008.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.6 , pp. 983-995
    • Liu, Y.1    Starzyk, J.A.2    Zhu, Z.3
  • 40
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • T.-Y. Kwok and D.-Y. Yeung, "Constructive algorithms for structure learning in feedforward neural networks for regression problems," IEEE Transactions on Neural Networks, vol. 8, pp. 630-645, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 41
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • L. Prechelt, "Automatic early stopping using cross validation: Quantifying the criteria," Neural Networks, vol. 11, pp. 761-767, 1998.
    • (1998) Neural Networks , vol.11 , pp. 761-767
    • Prechelt, L.1
  • 43
    • 0032657707 scopus 로고    scopus 로고
    • An ordering algorithm for pattern presentation in Fuzzy ARTMAP that tends to improve generalization performance
    • I. Dagher, M. Georgiopoulos, G. L. Heileman, and G. Bebis, "An ordering algorithm for pattern presentation in Fuzzy ARTMAP that tends to improve generalization performance," IEEE Trans-actions on Neural Networks, vol. 10, pp. 768-778, 1999.
    • (1999) IEEE Trans-actions on Neural Networks , vol.10 , pp. 768-778
    • Dagher, I.1    Georgiopoulos, M.2    Heileman, G.L.3    Bebis, G.4
  • 44
    • 41449085009 scopus 로고    scopus 로고
    • A hybrid neural network classifier combining ordered Fuzzy ARTMAP and the dynamic decay adjustment algorithm
    • S. Tan, M. Rao, and C. P. Lim, "A hybrid neural network classifier combining ordered Fuzzy ARTMAP and the dynamic decay adjustment algorithm," Soft Computing, vol. 12, pp. 765-775, 2008.
    • (2008) Soft Computing , vol.12 , pp. 765-775
    • Tan, S.1    Rao, M.2    Lim, C.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.