메뉴 건너뛰기




Volumn 62, Issue , 2016, Pages 24-44

An intelligent structural damage detection approach based on self-powered wireless sensor data

Author keywords

Damage detection; Probabilistic neural networks; Self powered wireless sensor; Structural health monitoring; Uncertainty analysis

Indexed keywords

DATA ACQUISITION; DECISION THEORY; FINITE ELEMENT METHOD; GAUSSIAN BEAMS; GAUSSIAN NOISE (ELECTRONIC); HIGHWAY ADMINISTRATION; NEURAL NETWORKS; PLATES (STRUCTURAL COMPONENTS); STRUCTURAL ANALYSIS; STRUCTURAL HEALTH MONITORING; UNCERTAINTY ANALYSIS; WIRELESS SENSOR NETWORKS;

EID: 84947261506     PISSN: 09265805     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.autcon.2015.10.001     Document Type: Article
Times cited : (109)

References (117)
  • 1
    • 84930934648 scopus 로고    scopus 로고
    • Performance-based structural health monitoring through an innovative hybrid data interpretation framework
    • M. Malekzadeh, G. Atia, and F.N. Catbas Performance-based structural health monitoring through an innovative hybrid data interpretation framework J. Civ. Struct. Heal. Monit. 5 3 2015 287 305
    • (2015) J. Civ. Struct. Heal. Monit. , vol.5 , Issue.3 , pp. 287-305
    • Malekzadeh, M.1    Atia, G.2    Catbas, F.N.3
  • 2
    • 84911499634 scopus 로고    scopus 로고
    • An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis
    • M. Malekzadeh, M. Gul, I.B. Kwon, and F.N. Catbas An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis Smart Struct. Syst. 14 2014 917 942
    • (2014) Smart Struct. Syst. , vol.14 , pp. 917-942
    • Malekzadeh, M.1    Gul, M.2    Kwon, I.B.3    Catbas, F.N.4
  • 3
    • 10444262019 scopus 로고    scopus 로고
    • Neural networks-based damage detection for bridges considering errors in baseline finite element models
    • J.J. Lee, J.W. Lee, J.H. Yi, C.B. Yun, and H.Y. Jung Neural networks-based damage detection for bridges considering errors in baseline finite element models J. Sound Vib. 280 2005 555 578
    • (2005) J. Sound Vib. , vol.280 , pp. 555-578
    • Lee, J.J.1    Lee, J.W.2    Yi, J.H.3    Yun, C.B.4    Jung, H.Y.5
  • 4
    • 84879534692 scopus 로고    scopus 로고
    • Parameter estimation of a rate-dependent damage constitutive model for damage-tolerant brittle composites by Self-OPTIM analyses
    • S. Shang, G.J. Yun, B.R. Kim, and H.K. Lee Parameter estimation of a rate-dependent damage constitutive model for damage-tolerant brittle composites by Self-OPTIM analyses Int. J. Damage Mech. 2012 10.1177/1056789512464634
    • (2012) Int. J. Damage Mech.
    • Shang, S.1    Yun, G.J.2    Kim, B.R.3    Lee, H.K.4
  • 5
    • 85001104724 scopus 로고    scopus 로고
    • Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review
    • Los Alamos National Laboratory NM
    • S.W. Doebling, C.R. Farrar, M.B. Prime, and D.W. Shevitz Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review Technical report LA-13070-MS 1996 Los Alamos National Laboratory NM
    • (1996) Technical Report LA-13070-MS
    • Doebling, S.W.1    Farrar, C.R.2    Prime, M.B.3    Shevitz, D.W.4
  • 6
    • 0033734262 scopus 로고    scopus 로고
    • Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures - A review
    • Y. Zou, L. Tong, and G.P. Steven Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures - a review J. Sound Vib. 230 2 2000 357 378
    • (2000) J. Sound Vib. , vol.230 , Issue.2 , pp. 357-378
    • Zou, Y.1    Tong, L.2    Steven, G.P.3
  • 7
    • 0033489494 scopus 로고    scopus 로고
    • A new view of nonlinear water waves: The Hilbert spectrum
    • N.E. Huang, Z. Shen, and S.R. Long A new view of nonlinear water waves: the Hilbert spectrum Annu. Rev. Fluid Mech. 31 1999 417 475
    • (1999) Annu. Rev. Fluid Mech. , vol.31 , pp. 417-475
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 8
    • 0033949806 scopus 로고    scopus 로고
    • Wavelet-based approach for structural damage detection, American Society ofCivil Engineers
    • Z. Hou, M. Noori, and R.S. Amand Wavelet-based approach for structural damage detection, American Society ofCivil Engineers J. Eng. Mech. 126 7 2000 677 683
    • (2000) J. Eng. Mech. , vol.126 , Issue.7 , pp. 677-683
    • Hou, Z.1    Noori, M.2    Amand, R.S.3
  • 9
    • 0035472916 scopus 로고    scopus 로고
    • Practical issues in the detection of damage inbeams using wavelets
    • S.T. Quek, Q. Wang, L. Zhang, and K.H. Ong Practical issues in the detection of damage inbeams using wavelets Smart Mater. Struct. 10 2001 1009 1017
    • (2001) Smart Mater. Struct. , vol.10 , pp. 1009-1017
    • Quek, S.T.1    Wang, Q.2    Zhang, L.3    Ong, K.H.4
  • 10
    • 0032302151 scopus 로고    scopus 로고
    • Structural damage localization from modal strain energy change
    • Z.Y. Shi, S.S. Law, and L.M. Zhang Structural damage localization from modal strain energy change J. Sound Vib. 218 5 1998 825 844
    • (1998) J. Sound Vib. , vol.218 , Issue.5 , pp. 825-844
    • Shi, Z.Y.1    Law, S.S.2    Zhang, L.M.3
  • 11
    • 0019557911 scopus 로고
    • Redesign of structural vibration modes by finite element inverse perturbation, American Society of Mechanical Engineers
    • K.A. Stetson, and I.R. Harrison Redesign of structural vibration modes by finite element inverse perturbation, American Society of Mechanical Engineers J. Eng. Power 103 1981 319 325
    • (1981) J. Eng. Power , vol.103 , pp. 319-325
    • Stetson, K.A.1    Harrison, I.R.2
  • 13
    • 0035446810 scopus 로고    scopus 로고
    • Civil structure condition assessment by FE model updating: Methodology and case studies
    • J.M.W. Brownjohn, P.Q. Xia, H. Hao, and Y. Xia Civil structure condition assessment by FE model updating: methodology and case studies Finite Elem. Anal. Des. 37 2001 761 775
    • (2001) Finite Elem. Anal. Des. , vol.37 , pp. 761-775
    • Brownjohn, J.M.W.1    Xia, P.Q.2    Hao, H.3    Xia, Y.4
  • 17
    • 79751492551 scopus 로고    scopus 로고
    • Vibration-based damage identification methods: A review and comparative study
    • W. Fan, and P. Qiao Vibration-based damage identification methods: a review and comparative study Struct. Health Monit. 10 1 2011 83 111
    • (2011) Struct. Health Monit. , vol.10 , Issue.1 , pp. 83-111
    • Fan, W.1    Qiao, P.2
  • 19
    • 84860198671 scopus 로고    scopus 로고
    • Instrumentation, nondestructive testing, and FEM updating for bridge evaluation using strain measurements
    • M. Sanayei, J.E. Phelps, J.D. Sipple, E.S. Bell, and B.R. Brenner Instrumentation, nondestructive testing, and FEM updating for bridge evaluation using strain measurements J. Bridg. Eng. 17 1 January/February 2012 130 138
    • (2012) J. Bridg. Eng. , vol.17 , Issue.1 , pp. 130-138
    • Sanayei, M.1    Phelps, J.E.2    Sipple, J.D.3    Bell, E.S.4    Brenner, B.R.5
  • 20
    • 84885398377 scopus 로고    scopus 로고
    • Nondestructive testing for design verification of Boston's central artery underpinning frames and connections
    • E. Santini-Bell, M. Sanayei, B. Brenner, J. Sipple, and A. Blanchard Nondestructive testing for design verification of Boston's central artery underpinning frames and connections Bridg. Struct. 4 2 Jun. 2008 87 98
    • (2008) Bridg. Struct. , vol.4 , Issue.2 , pp. 87-98
    • Santini-Bell, E.1    Sanayei, M.2    Brenner, B.3    Sipple, J.4    Blanchard, A.5
  • 21
    • 84880033195 scopus 로고    scopus 로고
    • Wireless sensors for structural health monitoring and damage detection techniques
    • B.A. Sundaram, K. Ravisankar, R. Senthil, and S. Parivalla Wireless sensors for structural health monitoring and damage detection techniques Curr. Sci. 104 11 2013 1496 1505
    • (2013) Curr. Sci. , vol.104 , Issue.11 , pp. 1496-1505
    • Sundaram, B.A.1    Ravisankar, K.2    Senthil, R.3    Parivalla, S.4
  • 23
    • 27144446772 scopus 로고    scopus 로고
    • Design of a wireless active sensing unit for localized structural health monitoring
    • J.P. Lynch Design of a wireless active sensing unit for localized structural health monitoring J. Struct. Control Health Monit. 12 3-4 2005 405 423
    • (2005) J. Struct. Control Health Monit. , vol.12 , Issue.3-4 , pp. 405-423
    • Lynch, J.P.1
  • 26
    • 84885009326 scopus 로고    scopus 로고
    • Internet-enabled wireless structural monitoring systems: Development and permanent deployment at the New Carquinez Suspension Bridge
    • M. Kurata, J. Kim, J.P. Lynch, G.W. van der Linden, H. Seddat, E. Thometz, P. Hipley, and L.H. Sheng Internet-enabled wireless structural monitoring systems: development and permanent deployment at the New Carquinez Suspension Bridge J. Struct. Eng. ASCE 139 10 2013 1688 1702
    • (2013) J. Struct. Eng. ASCE , vol.139 , Issue.10 , pp. 1688-1702
    • Kurata, M.1    Kim, J.2    Lynch, J.P.3    Van Der Linden, G.W.4    Seddat, H.5    Thometz, E.6    Hipley, P.7    Sheng, L.H.8
  • 28
    • 84857751088 scopus 로고    scopus 로고
    • Proceedings of the International Conference on Structural Health Monitoring and Intelligent Infrastructure, Tokyo, Japan, November 13-15
    • B.F. Spencer Jr. Opportunities and challenges for smart sensing technology Proceedings of the International Conference on Structural Health Monitoring and Intelligent Infrastructure, Tokyo, Japan, November 13-15 vol. 1 2003 65 71
    • (2003) Opportunities and Challenges for Smart Sensing Technology , vol.1 , pp. 65-71
    • Spencer, B.F.1
  • 30
    • 84915815323 scopus 로고    scopus 로고
    • Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring
    • Z. Zou, Y. Bao, H. Li, and B.F. Spencer Jr. Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring IEEE Sensors J. 15 2 2014 797 808
    • (2014) IEEE Sensors J. , vol.15 , Issue.2 , pp. 797-808
    • Zou, Z.1    Bao, Y.2    Li, H.3    Spencer, B.F.4
  • 32
    • 33751378730 scopus 로고    scopus 로고
    • A summary review of wireless sensors and sensor networks for structural health monitoring
    • J.P. Lynch, and K.J. Loh A summary review of wireless sensors and sensor networks for structural health monitoring Shock Vib. Dig. 38 2006 91 128
    • (2006) Shock Vib. Dig. , vol.38 , pp. 91-128
    • Lynch, J.P.1    Loh, K.J.2
  • 34
    • 81355147587 scopus 로고    scopus 로고
    • Development of a wireless sensor network system for suspension bridge health monitoring
    • M.J. Chae, H.S. Yoo, J.Y. Kim, and M.Y. Cho Development of a wireless sensor network system for suspension bridge health monitoring Autom. Constr. 21 2012 237 252
    • (2012) Autom. Constr. , vol.21 , pp. 237-252
    • Chae, M.J.1    Yoo, H.S.2    Kim, J.Y.3    Cho, M.Y.4
  • 35
    • 84884499213 scopus 로고    scopus 로고
    • Prediction of WSN placement for bridge health monitoring based on material characteristics
    • S.C. Bae, W.S. Jang, S. Woo, and D.H. Shin Prediction of WSN placement for bridge health monitoring based on material characteristics Autom. Constr. 35 2013 18 27
    • (2013) Autom. Constr. , vol.35 , pp. 18-27
    • Bae, S.C.1    Jang, W.S.2    Woo, S.3    Shin, D.H.4
  • 36
    • 84859762973 scopus 로고    scopus 로고
    • Smart sensing, monitoring, and damage detection for civil infrastructures
    • C.B. Yun, and J. Min Smart sensing, monitoring, and damage detection for civil infrastructures KSCE J. Civ. Eng. 15 1 2011 1 14
    • (2011) KSCE J. Civ. Eng. , vol.15 , Issue.1 , pp. 1-14
    • Yun, C.B.1    Min, J.2
  • 37
    • 0034165930 scopus 로고    scopus 로고
    • Fundamental understanding of piezoelectric strain sensors
    • J. Sirohi, and I. Chopra Fundamental understanding of piezoelectric strain sensors J. Intell. Mater. Syst. Struct. 11 2001 246 257
    • (2001) J. Intell. Mater. Syst. Struct. , vol.11 , pp. 246-257
    • Sirohi, J.1    Chopra, I.2
  • 38
    • 0037502904 scopus 로고    scopus 로고
    • A study of low level vibrations as a power source for wireless sensor nodes
    • S. Roundy, P.K. Wright, and J. Rabaey A study of low level vibrations as a power source for wireless sensor nodes Comput. Commun. 26 2002 1131 1144
    • (2002) Comput. Commun. , vol.26 , pp. 1131-1144
    • Roundy, S.1    Wright, P.K.2    Rabaey, J.3
  • 40
    • 84913580570 scopus 로고    scopus 로고
    • Self-powered piezo-floating-gate smart-gauges based on quasi-static mechanical energy concentrators and triggers
    • N. Lajnef, W. Borchani, R. Burgueño, and S. Chakrabartty Self-powered piezo-floating-gate smart-gauges based on quasi-static mechanical energy concentrators and triggers IEEE Sensors J. 15 2014 676 683 10.1109/JSEN.2014.2351398
    • (2014) IEEE Sensors J. , vol.15 , pp. 676-683
    • Lajnef, N.1    Borchani, W.2    Burgueño, R.3    Chakrabartty, S.4
  • 41
    • 84898407572 scopus 로고    scopus 로고
    • A concept for energy harvesting from quasi-static structural deformations through axially loaded bilaterally constrained columns with multiple bifurcation points
    • N. Lajnef, R. Burgueño, W. Borchani, and Y. Sun A concept for energy harvesting from quasi-static structural deformations through axially loaded bilaterally constrained columns with multiple bifurcation points Smart Mater. Struct. 23 2014 055005 10.1088/0964-1726/23/5/055005
    • (2014) Smart Mater. Struct. , vol.23 , pp. 055005
    • Lajnef, N.1    Burgueño, R.2    Borchani, W.3    Sun, Y.4
  • 49
    • 84914142573 scopus 로고    scopus 로고
    • Seismic protection of vulnerable equipment with semi-active control by employing robust and clipped-optimal algorithms
    • H. Salehi, T. Taghikhany, and A.Y. Fallah Seismic protection of vulnerable equipment with semi-active control by employing robust and clipped-optimal algorithms Int. J. Civ. Eng. 12 4 2014 413 428
    • (2014) Int. J. Civ. Eng. , vol.12 , Issue.4 , pp. 413-428
    • Salehi, H.1    Taghikhany, T.2    Fallah, A.Y.3
  • 50
    • 0035304952 scopus 로고    scopus 로고
    • A self-powered mechanical strain energy sensor
    • N. Elvin, A. Elvin, and M. Spector A self-powered mechanical strain energy sensor Smart Mater. Struct. 10 2001 293 299
    • (2001) Smart Mater. Struct. , vol.10 , pp. 293-299
    • Elvin, N.1    Elvin, A.2    Spector, M.3
  • 51
    • 0037360445 scopus 로고    scopus 로고
    • A self-powered damage detection sensor
    • N. Elvin, A. Elvin, and D.H. Choi A self-powered damage detection sensor J. Strain Anal. 38 2 2003 115 124
    • (2003) J. Strain Anal. , vol.38 , Issue.2 , pp. 115-124
    • Elvin, N.1    Elvin, A.2    Choi, D.H.3
  • 52
    • 80051469767 scopus 로고    scopus 로고
    • Toward an integrated smart sensing system and data interpretation techniques for pavement fatigue monitoring
    • N. Lajnef, M. Rhimi, K. Chatti, and L. Mhamdi Toward an integrated smart sensing system and data interpretation techniques for pavement fatigue monitoring J. Comput. Aided Civ. Infrastruct. Eng. 26 2011 513 523
    • (2011) J. Comput. Aided Civ. Infrastruct. Eng. , vol.26 , pp. 513-523
    • Lajnef, N.1    Rhimi, M.2    Chatti, K.3    Mhamdi, L.4
  • 53
    • 56349096320 scopus 로고    scopus 로고
    • A piezo-powered floating-gate sensor array for long-term fatigue monitoring in biomechanical implants
    • N. Lajnef, S. Chakrabartty, and N. Elvin A piezo-powered floating-gate sensor array for long-term fatigue monitoring in biomechanical implants IEEE Trans. Biomed. Circuits Syst. 2 3 2008 164 172
    • (2008) IEEE Trans. Biomed. Circuits Syst. , vol.2 , Issue.3 , pp. 164-172
    • Lajnef, N.1    Chakrabartty, S.2    Elvin, N.3
  • 55
    • 77949360212 scopus 로고    scopus 로고
    • Self-calibration and characterization of self-powered floating-gate usage monitors with single electron per second operational limit
    • C. Huang, N. Lajnef, and S. Chakrabartty Self-calibration and characterization of self-powered floating-gate usage monitors with single electron per second operational limit IEEE Trans. Biomed. Circuits Syst. I 57 2010 556 567
    • (2010) IEEE Trans. Biomed. Circuits Syst. I , vol.57 , pp. 556-567
    • Huang, C.1    Lajnef, N.2    Chakrabartty, S.3
  • 56
    • 0032021702 scopus 로고    scopus 로고
    • An improved variational method for finite element stress recovery and a posteriori error estimation
    • A. Tessler, H.R. Riggs, C.E. Freese, and G.M. Cook An improved variational method for finite element stress recovery and a posteriori error estimation Comput. Methods Appl. Mech. Eng. 155 2 1998 15 30
    • (1998) Comput. Methods Appl. Mech. Eng. , vol.155 , Issue.2 , pp. 15-30
    • Tessler, A.1    Riggs, H.R.2    Freese, C.E.3    Cook, G.M.4
  • 57
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. R. Stat. Soc. B-39 1 1977 1 38
    • (1977) J. R. Stat. Soc. , vol.39 B- , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 58
    • 0036009678 scopus 로고    scopus 로고
    • Probabilistic neural network for evaluating seismic liquefaction potential
    • A.T.C. Goh Probabilistic neural network for evaluating seismic liquefaction potential Can. Geotech. J. 39 2002 219 232
    • (2002) Can. Geotech. J. , vol.39 , pp. 219-232
    • Goh, A.T.C.1
  • 59
    • 80053274046 scopus 로고    scopus 로고
    • Optimization of location and number of sensors for structural health monitoring using genetic algorithm
    • N.G. Singh, and M. Joshi Optimization of location and number of sensors for structural health monitoring using genetic algorithm Mater. Forum 33 2009 359 367
    • (2009) Mater. Forum , vol.33 , pp. 359-367
    • Singh, N.G.1    Joshi, M.2
  • 60
    • 84856455418 scopus 로고    scopus 로고
    • An asynchronous analog self-powered sensor-data-logger with a 13.56 MHz RF programming interface
    • C. Huang, and S. Chakrabartty An asynchronous analog self-powered sensor-data-logger with a 13.56 MHz RF programming interface IEEE J. Solid State Circuits 47 2012 10.1109/JSSC.2011.2172159
    • (2012) IEEE J. Solid State Circuits , vol.47
    • Huang, C.1    Chakrabartty, S.2
  • 61
    • 0345192345 scopus 로고    scopus 로고
    • A fast iterative boundary element technique for solving closed crack problems
    • N. Elvin, and C.K.Y. Leung A fast iterative boundary element technique for solving closed crack problems Eng. Fract. Mech. 63 5 1999 631 650
    • (1999) Eng. Fract. Mech. , vol.63 , Issue.5 , pp. 631-650
    • Elvin, N.1    Leung, C.K.Y.2
  • 62
    • 84871536504 scopus 로고    scopus 로고
    • Capacity analysis of gusset plate connections using the Whitmore, block shear, global section shear, and finite element methods
    • P.L. Rosenstrauch, M. Sanayei, and B.R. Brenner Capacity analysis of gusset plate connections using the Whitmore, block shear, global section shear, and finite element methods Eng. Struct. 48 March 2013
    • (2013) Eng. Struct. , vol.48
    • Rosenstrauch, P.L.1    Sanayei, M.2    Brenner, B.R.3
  • 63
    • 84897576110 scopus 로고    scopus 로고
    • Finite element model updating using frequency response functions and numerical sensitivities, 2013
    • Jesse D. Sipple, and Masoud Sanayei Finite element model updating using frequency response functions and numerical sensitivities, 2013 Struct. Control. Health Monit. 21 5 2013 784 802
    • (2013) Struct. Control. Health Monit. , vol.21 , Issue.5 , pp. 784-802
    • Sipple, J.D.1    Sanayei, M.2
  • 64
    • 84947267292 scopus 로고    scopus 로고
    • Structural and local failure study of gusset plate in Minneapolis Bridge collapse
    • National Transportation Safety Board (NTSB) Washington, DC
    • NTSB Structural and local failure study of gusset plate in Minneapolis Bridge collapse Report - NTSBC070010 2008 National Transportation Safety Board (NTSB) Washington, DC
    • (2008) Report - NTSBC070010
  • 65
    • 78650380079 scopus 로고    scopus 로고
    • Nonlinear finite-element analysis of critical gusset plates in the I-35 W Bridge in Minnesota
    • M. Liao, T. Okazaki, R. Ballarini, A.E. Schultz, and T.V. Galambos Nonlinear finite-element analysis of critical gusset plates in the I-35 W Bridge in Minnesota J. Struct. Eng. ASCE 2011 59 69
    • (2011) J. Struct. Eng. ASCE , pp. 59-69
    • Liao, M.1    Okazaki, T.2    Ballarini, R.3    Schultz, A.E.4    Galambos, T.V.5
  • 66
    • 84947266160 scopus 로고    scopus 로고
    • A computational study of the I-35 W bridge collapse
    • Center for Transportation Studies, University of Minnesota Minneapolis, MN
    • M. Liao, and T. Okazaki A computational study of the I-35 W bridge collapse Final report, CTS Project # 2008049 2009 Center for Transportation Studies, University of Minnesota Minneapolis, MN
    • (2009) Final Report, CTS Project # 2008049
    • Liao, M.1    Okazaki, T.2
  • 68
    • 77955718610 scopus 로고    scopus 로고
    • I-35 W Bridge Collapse
    • S. Hao I-35 W Bridge Collapse J. Bridg. Eng. ASCE 2010 608 614
    • (2010) J. Bridg. Eng. ASCE , pp. 608-614
    • Hao, S.1
  • 69
    • 0033349534 scopus 로고    scopus 로고
    • A finite element method for crack growth without remeshing
    • N. Moes, J. Dolbow, and T. Belytschko A finite element method for crack growth without remeshing Int. J. Numer. Methods Eng. 46 1 1999 131 150
    • (1999) Int. J. Numer. Methods Eng. , vol.46 , Issue.1 , pp. 131-150
    • Moes, N.1    Dolbow, J.2    Belytschko, T.3
  • 70
    • 0029776114 scopus 로고    scopus 로고
    • Modeling construction processes using artificial neural networks
    • I. Flood, and P. Christophilos Modeling construction processes using artificial neural networks Autom. Constr. 4 4 1996 307 320
    • (1996) Autom. Constr. , vol.4 , Issue.4 , pp. 307-320
    • Flood, I.1    Christophilos, P.2
  • 71
    • 0034324870 scopus 로고    scopus 로고
    • Construction simulation using parallel computing environments
    • N. Kartam, and I. Flood Construction simulation using parallel computing environments Autom. Constr. 10 1 2000 69 78
    • (2000) Autom. Constr. , vol.10 , Issue.1 , pp. 69-78
    • Kartam, N.1    Flood, I.2
  • 72
    • 17444421871 scopus 로고    scopus 로고
    • Neural network prediction of pullout capacity of marquee ground anchors
    • M.A. Shahin, and M.B. Jaksa Neural network prediction of pullout capacity of marquee ground anchors Comput. Geotech. 32 3 2005 153 163
    • (2005) Comput. Geotech. , vol.32 , Issue.3 , pp. 153-163
    • Shahin, M.A.1    Jaksa, M.B.2
  • 73
    • 48949095958 scopus 로고    scopus 로고
    • Prediction of residual friction angle of clays using artifical neural network
    • S.K. Das, and P.K. Basudhar Prediction of residual friction angle of clays using artifical neural network Eng. Geol. 100 3-4 2008 142 145
    • (2008) Eng. Geol. , vol.100 , Issue.3-4 , pp. 142-145
    • Das, S.K.1    Basudhar, P.K.2
  • 74
    • 42649085069 scopus 로고    scopus 로고
    • Support vector machine applied to settlement of shallow foundations on cohesionless soils
    • P. Samui Support vector machine applied to settlement of shallow foundations on cohesionless soils Comput. Geotech. 35 3 2008 419 427
    • (2008) Comput. Geotech. , vol.35 , Issue.3 , pp. 419-427
    • Samui, P.1
  • 75
    • 76749110197 scopus 로고    scopus 로고
    • Intelligent computing for modelling axial capacity of pile foundations
    • M.A. Shahin Intelligent computing for modelling axial capacity of pile foundations Can. Geotech. J. 47 2 2010 230 243
    • (2010) Can. Geotech. J. , vol.47 , Issue.2 , pp. 230-243
    • Shahin, M.A.1
  • 76
    • 77954757869 scopus 로고    scopus 로고
    • New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming
    • A.H. Gandomi, A.H. Alavi, and M.G. Sahab New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming Mater. Struct. 43 7 2010 963 983
    • (2010) Mater. Struct. , vol.43 , Issue.7 , pp. 963-983
    • Gandomi, A.H.1    Alavi, A.H.2    Sahab, M.G.3
  • 77
    • 77953966803 scopus 로고    scopus 로고
    • Prediction of swelling pressure of soil using artificial intelligence techniques
    • S.K. Das, P. Samui, A.K. Sabat, and T.G. Sitharam Prediction of swelling pressure of soil using artificial intelligence techniques Environ. Earth Sci. 61 2 2010 393 403
    • (2010) Environ. Earth Sci. , vol.61 , Issue.2 , pp. 393-403
    • Das, S.K.1    Samui, P.2    Sabat, A.K.3    Sitharam, T.G.4
  • 78
    • 80055054635 scopus 로고    scopus 로고
    • Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
    • A.H. Alavi, and A.H. Gandomi Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing Comput. Struct. 89 23-24 2011 2176 2194
    • (2011) Comput. Struct. , vol.89 , Issue.23-24 , pp. 2176-2194
    • Alavi, A.H.1    Gandomi, A.H.2
  • 79
    • 79955683058 scopus 로고    scopus 로고
    • A robust data mining approach for formulation of geotechnical engineering systems
    • A.H. Alavi, and A.H. Gandomi A robust data mining approach for formulation of geotechnical engineering systems Eng. Comput. 28 3 2011 242 274
    • (2011) Eng. Comput. , vol.28 , Issue.3 , pp. 242-274
    • Alavi, A.H.1    Gandomi, A.H.2
  • 80
    • 79955465044 scopus 로고    scopus 로고
    • Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil
    • S.K. Das, P. Samui, and A.K. Sabat Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil Geotech. Geol. Eng. 29 3 2011 329 342
    • (2011) Geotech. Geol. Eng. , vol.29 , Issue.3 , pp. 329-342
    • Das, S.K.1    Samui, P.2    Sabat, A.K.3
  • 81
    • 84863412225 scopus 로고    scopus 로고
    • Machine learning techniques applied to prediction of residual strength of clay
    • S.K. Das, P. Samui, S.Z. Khan, and N. Sivakugan Machine learning techniques applied to prediction of residual strength of clay Cent. Eur. J. Geosci. 3 4 2011 449 461
    • (2011) Cent. Eur. J. Geosci. , vol.3 , Issue.4 , pp. 449-461
    • Das, S.K.1    Samui, P.2    Khan, S.Z.3    Sivakugan, N.4
  • 82
    • 79957743816 scopus 로고    scopus 로고
    • Linear genetic programming to scour below submerged pipeline
    • H.M. Azamathulla, A. Guven, and Y.K. Demir Linear genetic programming to scour below submerged pipeline Ocean Eng. 38 8-9 2011 995 1000
    • (2011) Ocean Eng. , vol.38 , Issue.8-9 , pp. 995-1000
    • Azamathulla, H.M.1    Guven, A.2    Demir, Y.K.3
  • 83
    • 78751638074 scopus 로고    scopus 로고
    • Support vector machine approach for longitudinal dispersion coefficients in natural streams
    • H.M. Azamathulla, and F.C. Wu Support vector machine approach for longitudinal dispersion coefficients in natural streams Appl. Soft Comput. 11 2 2011 2902 2905
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2902-2905
    • Azamathulla, H.M.1    Wu, F.C.2
  • 84
    • 84155184350 scopus 로고    scopus 로고
    • Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil
    • P. Samui Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil Int. J. Numer. Anal. Methods Geomech. 36 1 2012 100 110
    • (2012) Int. J. Numer. Anal. Methods Geomech. , vol.36 , Issue.1 , pp. 100-110
    • Samui, P.1
  • 85
    • 84864774120 scopus 로고    scopus 로고
    • Gene expression programming for prediction of scour depth downstream of sills
    • H.M. Azamathulla Gene expression programming for prediction of scour depth downstream of sills J. Hydrol. 460-461 2012 156 159
    • (2012) J. Hydrol. , vol.460-461 , pp. 156-159
    • Azamathulla, H.M.1
  • 87
    • 84886622755 scopus 로고    scopus 로고
    • Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming
    • S.K. Babanajad, A.H. Gandomi, D. Mohammadzadeh, and A.H. Alavi Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming Autom. Constr. 36 2013 136 144
    • (2013) Autom. Constr. , vol.36 , pp. 136-144
    • Babanajad, S.K.1    Gandomi, A.H.2    Mohammadzadeh, D.3    Alavi, A.H.4
  • 88
    • 84897819736 scopus 로고    scopus 로고
    • A hybrid fuzzy inference model based on RBFNN and artificial bee colony for predicting the uplift capacity of suction caissons
    • M.Y. Cheng, M.T. Cao, and D.H. Tran A hybrid fuzzy inference model based on RBFNN and artificial bee colony for predicting the uplift capacity of suction caissons Autom. Constr. 41 2014 60 69
    • (2014) Autom. Constr. , vol.41 , pp. 60-69
    • Cheng, M.Y.1    Cao, M.T.2    Tran, D.H.3
  • 89
    • 84901437920 scopus 로고    scopus 로고
    • Artificial neural network models for predicting condition of offshore oil and gas pipelines
    • M.S. El-Abbasy, A. Senouci, T. Zayed, F. Mirahadi, and L. Parvizsedghy Artificial neural network models for predicting condition of offshore oil and gas pipelines Autom. Constr. 45 2014 50 65
    • (2014) Autom. Constr. , vol.45 , pp. 50-65
    • El-Abbasy, M.S.1    Senouci, A.2    Zayed, T.3    Mirahadi, F.4    Parvizsedghy, L.5
  • 90
    • 84924061041 scopus 로고    scopus 로고
    • Hybrid computational model for predicting bridge scour depth near piers and abutments
    • J.S. Chou, and A.D. Pham Hybrid computational model for predicting bridge scour depth near piers and abutments Autom. Constr. 48 2014 88 96
    • (2014) Autom. Constr. , vol.48 , pp. 88-96
    • Chou, J.S.1    Pham, A.D.2
  • 91
    • 84894905086 scopus 로고    scopus 로고
    • Image-based retrieval of concrete crack properties for bridge inspection
    • R.S. Adhikari, O. Moselhi, and A. Bagchi Image-based retrieval of concrete crack properties for bridge inspection Autom. Constr. 39 2014 180 194
    • (2014) Autom. Constr. , vol.39 , pp. 180-194
    • Adhikari, R.S.1    Moselhi, O.2    Bagchi, A.3
  • 92
    • 84906948208 scopus 로고    scopus 로고
    • Load-settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks
    • M.A. Shahin Load-settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks Soils Found. 54 3 2014 515 522
    • (2014) Soils Found. , vol.54 , Issue.3 , pp. 515-522
    • Shahin, M.A.1
  • 93
    • 84947227881 scopus 로고    scopus 로고
    • Use of evolutionary computing for modelling some complex problems in geotechnical engineering
    • M.A. Shahin Use of evolutionary computing for modelling some complex problems in geotechnical engineering Geotech. Geol. Eng. 2014 1 17
    • (2014) Geotech. Geol. Eng. , pp. 1-17
    • Shahin, M.A.1
  • 94
    • 84906314779 scopus 로고    scopus 로고
    • Prediction of fracture characteristics of high strength and ultra high strength concrete beams based on relevance vector machine
    • (1056789514520796)
    • P. Yuvaraj, A.R. Murthy, N.R. Iyer, P. Samui, and S.K. Sekar Prediction of fracture characteristics of high strength and ultra high strength concrete beams based on relevance vector machine Int. J. Damage Mech. 2014 (1056789514520796)
    • (2014) Int. J. Damage Mech.
    • Yuvaraj, P.1    Murthy, A.R.2    Iyer, N.R.3    Samui, P.4    Sekar, S.K.5
  • 95
    • 0028416404 scopus 로고
    • Damage detection in structures based on feature - Sensitive neural networks
    • P. Szewezyk, and P. Hajela Damage detection in structures based on feature - sensitive neural networks J. Comp. Civ. Eng. ASCE 8 2 1994 163 178
    • (1994) J. Comp. Civ. Eng. ASCE , vol.8 , Issue.2 , pp. 163-178
    • Szewezyk, P.1    Hajela, P.2
  • 96
    • 0026822025 scopus 로고
    • Use of neural networks in detection of structural damage[J]
    • X. Wu, J. Gahboussi, and J.H. Garrett Use of neural networks in detection of structural damage[J] Comput. Struct. 42 4 1992 649 659
    • (1992) Comput. Struct. , vol.42 , Issue.4 , pp. 649-659
    • Wu, X.1    Gahboussi, J.2    Garrett, J.H.3
  • 98
    • 0027575295 scopus 로고
    • Neural networks trained by analytically simulated damage states
    • M.F. Elkordy, K.C. Chang, and G.C. Lee Neural networks trained by analytically simulated damage states J. Comp. Civ. Eng. ASCE 7 2 1993 130 145
    • (1993) J. Comp. Civ. Eng. ASCE , vol.7 , Issue.2 , pp. 130-145
    • Elkordy, M.F.1    Chang, K.C.2    Lee, G.C.3
  • 99
    • 0032024794 scopus 로고    scopus 로고
    • Dynamic finite element model updating using neural network[J]
    • R.I. Levin, and N.A.J. Lieven Dynamic finite element model updating using neural network[J] J. Sound Vib. 210 5 1998 593 607
    • (1998) J. Sound Vib. , vol.210 , Issue.5 , pp. 593-607
    • Levin, R.I.1    Lieven, N.A.J.2
  • 100
    • 0032171120 scopus 로고    scopus 로고
    • Structural damage detection using artificial neural networks
    • J. Zhao, J.N. Ivan, and J.T. DeWolf Structural damage detection using artificial neural networks J. Infrastruct. Syst. ASCE 4 3 1998 0093 0101
    • (1998) J. Infrastruct. Syst. ASCE , vol.4 , Issue.3 , pp. 0093-0101
    • Zhao, J.1    Ivan, J.N.2    DeWolf, J.T.3
  • 101
    • 0033717908 scopus 로고    scopus 로고
    • Damage identification using committee of neural networks[J]
    • T. Marwala Damage identification using committee of neural networks[J] J. Eng. Mech. ASCE 126 1 2000 43 50
    • (2000) J. Eng. Mech. ASCE , vol.126 , Issue.1 , pp. 43-50
    • Marwala, T.1
  • 103
    • 0035902057 scopus 로고    scopus 로고
    • Structural damage detection using artificial neural networks and measured FRF data reduced via principal comoponent projection
    • C. Zang, and M. Imregun Structural damage detection using artificial neural networks and measured FRF data reduced via principal comoponent projection J. Sound Vib. 242 5 2001 813 827
    • (2001) J. Sound Vib. , vol.242 , Issue.5 , pp. 813-827
    • Zang, C.1    Imregun, M.2
  • 104
    • 33645530462 scopus 로고    scopus 로고
    • Dynamic fussy wavelet neural network model for structural system identification
    • H. Adeli, and X. Jiang Dynamic fussy wavelet neural network model for structural system identification J. Struct. Eng. 132 2006 102 111
    • (2006) J. Struct. Eng. , vol.132 , pp. 102-111
    • Adeli, H.1    Jiang, X.2
  • 105
    • 84876835623 scopus 로고    scopus 로고
    • Structural damage detection of steel bridge girder using artificial neural networks and finite element models
    • S.J.S. Hakim, and H. Abdul Razak Structural damage detection of steel bridge girder using artificial neural networks and finite element models Steel Compos. Struct. 14 2013 367 377
    • (2013) Steel Compos. Struct. , vol.14 , pp. 367-377
    • Hakim, S.J.S.1    Abdul Razak, H.2
  • 106
    • 0242720349 scopus 로고    scopus 로고
    • Application of probabilistic neural network and static test data to the classification of bridge damage patterns, Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, Liu, Shih-Chi
    • B. Yan, and A. Miyamoto Application of probabilistic neural network and static test data to the classification of bridge damage patterns, Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, Liu, Shih-Chi Proc. SPIE 5057 2003 606 617
    • (2003) Proc. SPIE , vol.5057 , pp. 606-617
    • Yan, B.1    Miyamoto, A.2
  • 107
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D. Specht Probabilistic neural networks Neural Netw. 3 1990 109 118
    • (1990) Neural Netw. , vol.3 , pp. 109-118
    • Specht, D.1
  • 109
    • 49249092314 scopus 로고    scopus 로고
    • Damage localization for bridges using probabilistic neural networks
    • J.J. Lee, and C.B. Yun Damage localization for bridges using probabilistic neural networks KSCE J. Civ. Eng. 11 2007 111 120
    • (2007) KSCE J. Civ. Eng. , vol.11 , pp. 111-120
    • Lee, J.J.1    Yun, C.B.2
  • 113
    • 0034769907 scopus 로고    scopus 로고
    • Application of adaptive probabilistic neural network to damage detection of Tsing Ma suspension bridge
    • Health Monitoring and Management of Civil Infrastructure Systems
    • Y.Q. Ni, S.F. Jiang, and J.M. Ko Application of adaptive probabilistic neural network to damage detection of Tsing Ma suspension bridge Proc. SPIE 4337 Health Monitoring and Management of Civil Infrastructure Systems 347 2001 10.1117/12.435610
    • (2001) Proc. SPIE 4337 , vol.347
    • Ni, Y.Q.1    Jiang, S.F.2    Ko, J.M.3
  • 114
    • 69449101508 scopus 로고    scopus 로고
    • A probabilistic neural network for earthquake magnitude prediction
    • H. Adeli, and A. Panakkat A probabilistic neural network for earthquake magnitude prediction Neural Netw. 22 2009 1018 1024
    • (2009) Neural Netw. , vol.22 , pp. 1018-1024
    • Adeli, H.1    Panakkat, A.2
  • 115
    • 78650232140 scopus 로고    scopus 로고
    • Formulation of flow number of asphalt mixes using a hybrid computational method
    • A.H. Alavi, M. Ameri, A.H. Gandomi, and M.R. Mirzahosseini Formulation of flow number of asphalt mixes using a hybrid computational method Constr. Build. Mater. 25 3 2011 1338 1355
    • (2011) Constr. Build. Mater. , vol.25 , Issue.3 , pp. 1338-1355
    • Alavi, A.H.1    Ameri, M.2    Gandomi, A.H.3    Mirzahosseini, M.R.4
  • 116
    • 0001290841 scopus 로고    scopus 로고
    • Glossary of terms
    • R. Kohavi, and P. Foster Glossary of terms Mach. Learn. 30 1998 271 274
    • (1998) Mach. Learn. , vol.30 , pp. 271-274
    • Kohavi, R.1    Foster, P.2
  • 117
    • 79957784176 scopus 로고    scopus 로고
    • A hybrid data-fusion system using modal data and probabilistic neural network for damage detection
    • S.F. Jiang, C. Fu, and C. Zhang A hybrid data-fusion system using modal data and probabilistic neural network for damage detection Adv. Eng. Softw. 42 2011 368 374
    • (2011) Adv. Eng. Softw. , vol.42 , pp. 368-374
    • Jiang, S.F.1    Fu, C.2    Zhang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.