메뉴 건너뛰기




Volumn 45, Issue , 2014, Pages 50-65

Artificial neural network models for predicting condition of offshore oil and gas pipelines

Author keywords

Artificial neural network; Condition prediction; Offshore oil and gas pipelines

Indexed keywords

CORROSION; GAS PIPELINES; NEURAL NETWORKS;

EID: 84901437920     PISSN: 09265805     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.autcon.2014.05.003     Document Type: Article
Times cited : (167)

References (41)
  • 1
    • 0032051565 scopus 로고    scopus 로고
    • Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects
    • DOI 10.1016/S0308-0161(98)00006-4
    • M. Ahammed Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects Int. J. Press. Vessel. Pip. 75 4 1998 321 329 (Pubitemid 28556127)
    • (1998) International Journal of Pressure Vessels and Piping , vol.75 , Issue.4 , pp. 321-329
    • Ahammed, M.1
  • 2
    • 33646167815 scopus 로고    scopus 로고
    • Condition rating model for underground infrastructure sustainable water mains
    • H. Al-Barqawi, and T. Zayed Condition rating model for underground infrastructure sustainable water mains ASCE J. Perform. Constr. Facil. 20 2 2006 126 135
    • (2006) ASCE J. Perform. Constr. Facil. , vol.20 , Issue.2 , pp. 126-135
    • Al-Barqawi, H.1    Zayed, T.2
  • 3
    • 0032451569 scopus 로고    scopus 로고
    • Leak detection in liquefied gas pipelines by artificial neural networks
    • S. Belsito, P. Lombardi, P. Andreussi, and S. Banerjee Leak detection in liquefied gas pipelines by artificial neural networks Am. Inst. Chem. Eng. J. 44 12 1998 2675 2688 (Pubitemid 29118307)
    • (1998) AIChE Journal , vol.44 , Issue.12 , pp. 2675-2688
    • Belsito, S.1    Lombardi, P.2    Andreussi, P.3    Banerjee, S.4
  • 5
    • 33745057735 scopus 로고    scopus 로고
    • Oil pipeline spill cause analysis: A classification tree approach
    • DOI 10.1108/13552510610667192
    • M. Bertolini, and N. Bevilacqua Methodology and theory oil pipeline cause analysis a classification tree approach J. Qual. Maint. Eng. 12 2 2006 186 198 (Pubitemid 43883171)
    • (2006) Journal of Quality in Maintenance Engineering , vol.12 , Issue.2 , pp. 186-198
    • Bertolini, M.1    Bevilacqua, M.2
  • 7
    • 33748639078 scopus 로고    scopus 로고
    • MFL signals and artificial neural networks applied to detection and classification of pipe weld defects
    • DOI 10.1016/j.ndteint.2006.04.003, PII S096386950600034X
    • A.A. Carvalho, J.M.A. Rebello, L.V.S. Sagrilo, C.S. Camerini, and I.V.J. Miranda MFL signals and artificial neural networks applied to detection and classification of pipe weld defects NDT E Int. 39 8 2006 661 667 (Pubitemid 44382711)
    • (2006) NDT and E International , vol.39 , Issue.8 , pp. 661-667
    • Carvalho, A.A.1    Rebello, J.M.A.2    Sagrilo, L.V.S.3    Camerini, C.S.4    Miranda, I.V.J.5
  • 8
    • 77952753917 scopus 로고    scopus 로고
    • Machine learning methods for protein structure prediction
    • J. Cheng, A.N. Tegge, and P. Baldi Machine learning methods for protein structure prediction IEEE Rev. Biomed. Eng. 1 2008 41 49
    • (2008) IEEE Rev. Biomed. Eng. , vol.1 , pp. 41-49
    • Cheng, J.1    Tegge, A.N.2    Baldi, P.3
  • 10
    • 84855605254 scopus 로고    scopus 로고
    • Decision analysis framework for risk management of crude oil pipeline system
    • A.W. Dawotola, P.H.A.J.M. VanGelder, and J.K. Vrijling Decision analysis framework for risk management of crude oil pipeline system Adv. Decis. Sci. 2011 2011
    • (2011) Adv. Decis. Sci. , vol.2011
    • Dawotola, A.W.1    Vangelder, P.H.A.J.M.2    Vrijling, J.K.3
  • 12
    • 0034881839 scopus 로고    scopus 로고
    • A risk based model for inspection and maintenance of cross country petroleum pipelines
    • P.K. Dey A risk based model for inspection and maintenance of cross country petroleum pipelines J. Qual. Maint. Eng. 7 1 2001 25 43
    • (2001) J. Qual. Maint. Eng. , vol.7 , Issue.1 , pp. 25-43
    • Dey, P.K.1
  • 13
  • 14
    • 84901250651 scopus 로고    scopus 로고
    • A condition assessment model for oil and gas pipelines using integrated simulation and analytic network process
    • Taylor and Francis Group (in-press)
    • M.S. El-Abbasy, A. Senouci, T. Zayed, and F. Mosleh A condition assessment model for oil and gas pipelines using integrated simulation and analytic network process Journal of Structure and Infrastructure Engineering 2014 Taylor and Francis Group (in-press)
    • (2014) Journal of Structure and Infrastructure Engineering
    • El-Abbasy, M.S.1    Senouci, A.2    Zayed, T.3    Mosleh, F.4
  • 16
    • 84880957896 scopus 로고    scopus 로고
    • Comparative study of different data mining techniques performance in knowledge discovery from medical database
    • O. Folorunsho Comparative study of different data mining techniques performance in knowledge discovery from medical database Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3 3 2013 11 15
    • (2013) Int. J. Adv. Res. Comput. Sci. Softw. Eng. , vol.3 , Issue.3 , pp. 11-15
    • Folorunsho, O.1
  • 17
    • 84892477960 scopus 로고    scopus 로고
    • Oil and Gas Pipelines Social and Environmental Impact Assessment: State of the Art
    • R. Goodland Oil and Gas Pipelines Social and Environmental Impact Assessment: State of the Art IAIA 2005 Conference, Fargo, ND, USA 2005
    • (2005) IAIA 2005 Conference, Fargo, ND, USA
    • Goodland, R.1
  • 20
    • 84901403176 scopus 로고    scopus 로고
    • Performance assessment among hybrid algorithms in tuning SVR parameters to predict pipe failure rates
    • M. Kalanaki, and J. Soltani Performance assessment among hybrid algorithms in tuning SVR parameters to predict pipe failure rates Adv. Comput. Int. J. 2 5 2013 40 46
    • (2013) Adv. Comput. Int. J. , vol.2 , Issue.5 , pp. 40-46
    • Kalanaki, M.1    Soltani, J.2
  • 22
    • 61949199927 scopus 로고    scopus 로고
    • Predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic model
    • S.X. Li, S.R. Yu, H.L. Zeng, J.H. Li, and R. Liang Predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic model J. Pet. Sci. Eng. 65 3-4 2009 162 166
    • (2009) J. Pet. Sci. Eng. , vol.65 , Issue.34 , pp. 162-166
    • Li, S.X.1    Yu, S.R.2    Zeng, H.L.3    Li, J.H.4    Liang, R.5
  • 23
    • 84870361162 scopus 로고    scopus 로고
    • A numerical corrosion rate prediction method for direct assessment of wet gas gathering pipelines internal corrosion
    • K. Liao, Q. Yao, X. Wu, and W. Jia A numerical corrosion rate prediction method for direct assessment of wet gas gathering pipelines internal corrosion Energies 5 10 2012 3892 3907
    • (2012) Energies , vol.5 , Issue.10 , pp. 3892-3907
    • Liao, K.1    Yao, Q.2    Wu, X.3    Jia, W.4
  • 24
    • 84890353775 scopus 로고    scopus 로고
    • Machine learning approaches in improving service level agreement-based admission control for a software-as-a-service provider in cloud
    • R.S. Mohana, and P. Thangaraj Machine learning approaches in improving service level agreement-based admission control for a software-as-a-service provider in cloud J. Comput. Sci. 9 10 2013 1283 1294
    • (2013) J. Comput. Sci. , vol.9 , Issue.10 , pp. 1283-1294
    • Mohana, R.S.1    Thangaraj, P.2
  • 25
    • 84975830551 scopus 로고    scopus 로고
    • Comparing data mining classifiers for grading raisins based on visual features
    • K. Mollazade, M. Omid, and A. Arefi Comparing data mining classifiers for grading raisins based on visual features Comput. Electron. Agric. 84 2012 2012 124 131
    • (2012) Comput. Electron. Agric. , vol.84 , Issue.2012 , pp. 124-131
    • Mollazade, K.1    Omid, M.2    Arefi, A.3
  • 26
    • 79958797885 scopus 로고    scopus 로고
    • Deterministic prediction of corroding pipeline remaining strength in marine environment using DNV RP - F101 (Part A)
    • N.M. Noor, N.A.N. Ozman, and N. Yahaya Deterministic prediction of corroding pipeline remaining strength in marine environment using DNV RP - F101 (Part A) J. Sustain. Sci. Manag. 6 1 2011 69 78
    • (2011) J. Sustain. Sci. Manag. , vol.6 , Issue.1 , pp. 69-78
    • Noor, N.M.1    Ozman, N.A.N.2    Yahaya, N.3
  • 27
    • 84892479146 scopus 로고    scopus 로고
    • The forecasting residual life of corroding pipeline based on semi-probabilistic method
    • N.M. Noor, N. Yahaya, N.A.N. Ozman, and S.R. Othman The forecasting residual life of corroding pipeline based on semi-probabilistic method UNIMAS E J. Civ. Eng. 1 2010 246 263
    • (2010) UNIMAS e J. Civ. Eng. , vol.1 , pp. 246-263
    • Noor, N.M.1    Yahaya, N.2    Ozman, N.A.N.3    Othman, S.R.4
  • 29
    • 84890020507 scopus 로고    scopus 로고
    • Prediction of software effort using artificial neural network and support vector machine
    • M.D. Prabhakar Prediction of software effort using artificial neural network and support vector machine Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3 3 2013 40 46
    • (2013) Int. J. Adv. Res. Comput. Sci. Softw. Eng. , vol.3 , Issue.3 , pp. 40-46
    • Prabhakar, M.D.1
  • 30
    • 84865608435 scopus 로고    scopus 로고
    • Natural gas pipeline corrosion rate prediction model based on bp neural network
    • C.Y. Ren, W. Qiao, and X. Tian Natural gas pipeline corrosion rate prediction model based on bp neural network Adv. Intell. Soft Comput. 147 2012 449 455
    • (2012) Adv. Intell. Soft Comput. , vol.147 , pp. 449-455
    • Ren, C.Y.1    Qiao, W.2    Tian, X.3
  • 33
    • 67649583202 scopus 로고    scopus 로고
    • A methodology for risk-based inspection planning of oil and gas pipes based on fuzzy logic framework
    • M. Singh, and T. Markeset A methodology for risk-based inspection planning of oil and gas pipes based on fuzzy logic framework Eng. Fail. Anal. 16 7 2009 2098 2113
    • (2009) Eng. Fail. Anal. , vol.16 , Issue.7 , pp. 2098-2113
    • Singh, M.1    Markeset, T.2
  • 34
    • 0036722579 scopus 로고    scopus 로고
    • Probabilistic neural network for reliability assessment of oil and gas pipelines
    • S.K. Sinha, and M.D. Pandey Probabilistic neural network for reliability assessment of oil and gas pipelines Comput. Aided Civ. Infrastruct. Eng. 17 5 2002 320 329 (Pubitemid 34811283)
    • (2002) Computer-Aided Civil and Infrastructure Engineering , vol.17 , Issue.5 , pp. 320-329
    • Sinha, S.K.1    Pandey, M.D.2
  • 35
    • 58649092009 scopus 로고    scopus 로고
    • Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling
    • M. Tabesh, J. Soltani, R. Farmani, and D. Savic Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling J. Hydroinf. 11 1 2009 1 17
    • (2009) J. Hydroinf. , vol.11 , Issue.1 , pp. 1-17
    • Tabesh, M.1    Soltani, J.2    Farmani, R.3    Savic, D.4
  • 37
    • 84901425395 scopus 로고    scopus 로고
    • Computer Software surfed at 5 July 2013
    • Ward Systems Group Inc. Neuroshell 2V4.0 Computer Software http://www.wardsystems.com/neuroshell2.asp 1996 surfed at 5 July 2013
    • (1996) Neuroshell 2V4.0
  • 38
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • H. White Learning in artificial neural networks: a statistical perspective Neural Comput. 1 4 1989 425 464
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 425-464
    • White, H.1
  • 40
    • 22144434481 scopus 로고    scopus 로고
    • Deterministic models for assessing productivity and cost of bored piles
    • DOI 10.1080/01446190500039911
    • T. Zayed, and D. Halpin Deterministic models for assessing prod. and cost of bored piles Constr. Manag. Econ. 23 5 2005 531 543 (Pubitemid 40974450)
    • (2005) Construction Management and Economics , vol.23 , Issue.5 , pp. 531-543
    • Zayed, T.M.1    Halpin, D.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.