메뉴 건너뛰기




Volumn 54, Issue 3, 2014, Pages 515-522

Load-settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks

Author keywords

Load settlement; Modeling; Pile foundations; Recurrent neural networks

Indexed keywords

BEARING CAPACITY; FOUNDATIONS; MODELS; PILE FOUNDATIONS; RECURRENT NEURAL NETWORKS;

EID: 84906948208     PISSN: 00380806     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sandf.2014.04.015     Document Type: Conference Paper
Times cited : (60)

References (41)
  • 1
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • Abu-Kiefa, M.A, 1998. General regression neural networks for driven piles in cohesionless soils. J. Geotech. Geoenviron. Eng. 124 (12), 1177-1185.
    • (1998) J. Geotech. Geoenviron. Eng. , vol.124 , Issue.12 , pp. 1177-1185
    • Abu-Kiefa, M.A.1
  • 2
    • 34247132993 scopus 로고    scopus 로고
    • Artificial neural network application to estimate kinematic soil pile interaction response parameters
    • Ahmad, I., El Naggar, H., Kahn, A.N., 2007. Artificial neural network application to estimate kinematic soil pile interaction response parameters. Soil Dyn. Earthq. Eng. 27 (9), 892-905.
    • (2007) Soil Dyn. Earthq. Eng. , vol.27 , Issue.9 , pp. 892-905
    • Ahmad, I.1    El Naggar, H.2    Kahn, A.N.3
  • 3
    • 61749083047 scopus 로고    scopus 로고
    • Piles shaft capacity from CPT and CPTU data by polynomial neural networks and genetic algorithms
    • Ardalan, H., Eslami, A., Nariman-Zadeh, N, 2009. Piles shaft capacity from CPT and CPTU data by polynomial neural networks and genetic algorithms. Comput. Geotech. 36 (4), 616-625.
    • (2009) Comput. Geotech. , vol.36 , Issue.4 , pp. 616-625
    • Ardalan, H.1    Eslami, A.2    Nariman-Zadeh, N.3
  • 4
    • 84882742155 scopus 로고    scopus 로고
    • Simulating pile load-settlement behavior from CPT data using intelligent computing
    • Alkroosh, I., Nikraz, H., 2011. Simulating pile load-settlement behavior from CPT data using intelligent computing. Cent. Eur. J. Eng. 1 (3), 295-305.
    • (2011) Cent. Eur. J. Eng. , vol.1 , Issue.3 , pp. 295-305
    • Alkroosh, I.1    Nikraz, H.2
  • 5
    • 84859041899 scopus 로고
    • Development of an improved pile design procedure for single piles in clays and sands
    • Civil Engineering, Texas A&M University, Texas
    • Briaud, J.L., Tucker, L.M., Anderson, J.S., Perdomo, D., Coyle, H.M., 1986. Development of an improved Pile Design Procedure for Single Piles in Clays and Sands. Research Report 4981-1. Civil Engineering, Texas A&M University, Texas.
    • (1986) Research Report 4981-1
    • Briaud, J.L.1    Tucker, L.M.2    Anderson, J.S.3    Perdomo, D.4    Coyle, H.M.5
  • 7
    • 0005380346 scopus 로고
    • Neural networks primer, Part III
    • Caudill, M., 1988. Neural networks primer, Part III. AI Expert 3 (6), 53-59.
    • (1988) AI Expert , vol.3 , Issue.6 , pp. 53-59
    • Caudill, M.1
  • 8
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G, 1989. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 3, 303-314.
    • (1989) Math. Control Signals Syst. , vol.3 , pp. 303-314
    • Cybenko, G.1
  • 9
    • 0028977232 scopus 로고
    • Neural network: An alternative to pile driving formulas
    • Chan, W.T., Chow, Y.K., Liu, L.F., 1995. Neural network: an alternative to pile driving formulas. Comput. Geotech. 17, 135-156.
    • (1995) Comput. Geotech. , vol.17 , pp. 135-156
    • Chan, W.T.1    Chow, Y.K.2    Liu, L.F.3
  • 10
    • 33645990587 scopus 로고    scopus 로고
    • Computational intelligence in earth sciences and environmental applications: Issues and challenges
    • Cherkassky, V., Krasnopolsky, D.P., Valdes, J., 2006. Computational intelligence in earth sciences and environmental applications: issues and challenges. Neural Netw. 19, 113-121.
    • (2006) Neural Netw. , vol.19 , pp. 113-121
    • Cherkassky, V.1    Krasnopolsky, D.P.2    Valdes, J.3
  • 11
    • 37849189166 scopus 로고    scopus 로고
    • Undrained lateral load capacity of piles in clay using artificial neural network
    • Das, S.K., Basudhar, P.K., 2006. Undrained lateral load capacity of piles in clay using artificial neural network. Comput. Geotech. 33 (8), 454-459.
    • (2006) Comput. Geotech. , vol.33 , Issue.8 , pp. 454-459
    • Das, S.K.1    Basudhar, P.K.2
  • 12
    • 77954930625 scopus 로고    scopus 로고
    • Discussion of: Intelligent computing for modeling axial capacity of pile foundations
    • Das, S.K., Sivakugan, N, 2010. Discussion of: intelligent computing for modeling axial capacity of pile foundations. Can. Geotech. J. 47, 928-930.
    • (2010) Can. Geotech. J. , vol.47 , pp. 928-930
    • Das, S.K.1    Sivakugan, N.2
  • 14
    • 0024171484 scopus 로고
    • Unified design of piles and pile groups
    • Fellenius, B.H., 1988. Unified design of piles and pile groups. Transp. Res. Rec. 1169, 75-81.
    • (1988) Transp. Res. Rec. , vol.1169 , pp. 75-81
    • Fellenius, B.H.1
  • 16
    • 0030414004 scopus 로고    scopus 로고
    • Pile driving records reanalyzed using neural networks
    • Goh, A.T.C., 1996. Pile driving records reanalyzed using neural networks. J. Geotech. Eng. 122 (6), 492-495.
    • (1996) J. Geotech. Eng. , vol.122 , Issue.6 , pp. 492-495
    • Goh, A.T.C.1
  • 17
    • 11344291763 scopus 로고    scopus 로고
    • Bayesian neural network analysis of undrained side resistance of drilled shafts
    • Goh, A.T., Kulhawy, F.H., Chua, C.G, 2005. Bayesian neural network analysis of undrained side resistance of drilled shafts. J. Geotech. Geoenviron. Eng. 131 (1), 84-93.
    • (2005) J. Geotech. Geoenviron. Eng. , vol.131 , Issue.1 , pp. 84-93
    • Goh, A.T.1    Kulhawy, F.H.2    Chua, C.G.3
  • 19
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359-366.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 20
    • 0004199140 scopus 로고
    • Addison-Wesley Publishing Company, Reading, MA
    • Hecht-Nielsen, R., 1990. Neurocomputing. Addison-Wesley Publishing Company, Reading, MA.
    • (1990) Neurocomputing
    • Hecht-Nielsen, R.1
  • 23
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using artificial neural networks
    • Lee, I.M., Lee, J.H., 1996. Prediction of pile bearing capacity using artificial neural networks. Comput. Geotech. 18 (3), 189-200.
    • (1996) Comput. Geotech. , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 25
    • 0004304019 scopus 로고    scopus 로고
    • Microcal Microcal Software, Inc., Northampton, MA
    • Microcal, 1999. Microcal Origin Version 6.0. Microcal Software, Inc., Northampton, MA.
    • (1999) Microcal Origin Version 6.0
  • 27
    • 67651006180 scopus 로고    scopus 로고
    • Prediction of pile settlement using artificial neural networks based on standard penetration test data
    • Nejad, F.P., Jaksa, M.B., Kakhi, M., McCabe, B.A., 2009. Prediction of pile settlement using artificial neural networks based on standard penetration test data. Comput. Geotech. 36 (7), 1125-1133.
    • (2009) Comput. Geotech. , vol.36 , Issue.7 , pp. 1125-1133
    • Nejad, F.P.1    Jaksa, M.B.2    Kakhi, M.3    McCabe, B.A.4
  • 28
    • 0032786618 scopus 로고    scopus 로고
    • Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)
    • Penumadu, D., Zhao, R., 1999. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN). Comput. Geotech. 24 (3), 207-230.
    • (1999) Comput. Geotech. , vol.24 , Issue.3 , pp. 207-230
    • Penumadu, D.1    Zhao, R.2
  • 29
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machine-based modeling of seismic liquefaction potential
    • Pal, M., 2006. Support vector machine-based modeling of seismic liquefaction potential. Int. J. Numer. Anal. Methods Geomech. 30 (10), 983-996.
    • (2006) Int. J. Numer. Anal. Methods Geomech. , vol.30 , Issue.10 , pp. 983-996
    • Pal, M.1
  • 30
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • Rumelhart, D.E., McClelland, J. L. (Eds.) MIT Press, Cambridge
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning internal representation by error propagation. In: Rumelhart, D.E., McClelland, J. L. (Eds.), Parallel Distributed Processing. MIT Press, Cambridge.
    • (1986) Parallel Distributed Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 32
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin, M.A., Jaksa, M.B., Maier, H.R., 2001. Artificial neural network applications in geotechnical engineering. Aust. Geomech. 36 (1), 49-62.
    • (2001) Aust. Geomech. , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 33
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin, M.A., Maier, H.R., Jaksa, M.B., 2004. Data division for developing neural networks applied to geotechnical engineering. J. Comput. Civ. Eng. 18 (2), 105-114.
    • (2004) J. Comput. Civ. Eng. , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 34
    • 33846957663 scopus 로고    scopus 로고
    • Modeling the mechanical behavior of railway ballast using artificial neural networks
    • Shahin, M.A., Indraratna, B., 2006. Modeling the mechanical behavior of railway ballast using artificial neural networks. Can. Geotech. J. 43 (1), 1144-1152.
    • (2006) Can. Geotech. J. , vol.43 , Issue.1 , pp. 1144-1152
    • Shahin, M.A.1    Indraratna, B.2
  • 35
    • 33746930800 scopus 로고    scopus 로고
    • Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks
    • Shahin, M.A., Jaksa, M.B., 2006. Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks. Can. Geotech. J. 43 (6), 626-637.
    • (2006) Can. Geotech. J. , vol.43 , Issue.6 , pp. 626-637
    • Shahin, M.A.1    Jaksa, M.B.2
  • 36
    • 77955473867 scopus 로고    scopus 로고
    • Recent advances and future challenges for artificial neural systems in geotechnical engineering applications
    • Article ID 308239
    • Shahin, M.A., Jaksa, M.B., Maier, H.R., 2009. Recent advances and future challenges for artificial neural systems in geotechnical engineering applications. J. Adv. Artif. Neural Syst. (Article ID 308239, 9 pp). http://dx.doi.org/10.1155/2009/308239.
    • (2009) J. Adv. Artif. Neural Syst.
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 37
    • 76749110197 scopus 로고    scopus 로고
    • Intelligent computing for modeling axial capacity of pile foundations
    • Shahin, M.A., 2010. Intelligent computing for modeling axial capacity of pile foundations. Can. Geotech. J. 47 (2), 230-243.
    • (2010) Can. Geotech. J. , vol.47 , Issue.2 , pp. 230-243
    • Shahin, M.A.1
  • 38
    • 84882751629 scopus 로고    scopus 로고
    • Artificial intelligence in geotechnical engineering: Applications, modeling aspects, and future directions
    • Yang, X., Gandomi, A.H., Talatahari, S., Alavi, A.H. (Eds.) Elsevier Inc., London
    • Shahin, M.A., 2013. Artificial intelligence in geotechnical engineering: applications, modeling aspects, and future directions. In: Yang, X., Gandomi, A.H., Talatahari, S., Alavi, A.H. (Eds.), Metaheuristics in Water, Geotechnical and Transport Engineering. Elsevier Inc., London, pp. 169-204.
    • (2013) Metaheuristics in Water, Geotechnical and Transport Engineering , pp. 169-204
    • Shahin, M.A.1
  • 40
    • 84889588129 scopus 로고    scopus 로고
    • Pipe pile setup: Database and prediction model using artificial neural network
    • Tarawneh, B., 2013. Pipe pile setup: database and prediction model using artificial neural network. Soils Found. 53 (4), 607-615.
    • (2013) Soils Found. , vol.53 , Issue.4 , pp. 607-615
    • Tarawneh, B.1
  • 41
    • 70249090303 scopus 로고    scopus 로고
    • Ward Ward Systems Group, Inc. (MA)
    • Ward, 2007. NeuroShell 2 Release, 4. Ward Systems Group, Inc. (MA).
    • (2007) NeuroShell 2 Release, 4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.