메뉴 건너뛰기




Volumn 17, Issue 11, 2015, Pages 1875-1886

Describing Multimedia Content Using Attention-Based Encoder-Decoder Networks

Author keywords

Attention mechanism; deep learning; recurrent neural networks

Indexed keywords

NEURAL NETWORKS; SPEECH RECOGNITION; SPEECH TRANSMISSION;

EID: 84946763507     PISSN: 15209210     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMM.2015.2477044     Document Type: Article
Times cited : (415)

References (75)
  • 1
    • 84887601544 scopus 로고    scopus 로고
    • BabyTalk: Understanding and generating simple image descriptions
    • Dec
    • G. Kulkarni et al., "BabyTalk: Understanding and generating simple image descriptions," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 2891-2903, Dec. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.12 , pp. 2891-2903
    • Kulkarni, G.1
  • 2
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 3
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using RNN encoder-decoder for statistical machine translation
    • Oct
    • K. Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," in Proc. Empiricial Methods Natural Language Process., Oct. 2014, pp. 1724-1734.
    • (2014) Proc. Empiricial Methods Natural Language Process. , pp. 1724-1734
    • Cho, K.1
  • 5
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 6
    • 0041914606 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: The difficulty of learning longterm dependencies
    • J. Kolen and S. Kremer, Eds. Piscataway, NJ, USA, IEEE Press
    • S. Hochreiter, F. F. Informatik, Y. Bengio, P. Frasconi, and J. Schmidhuber, "Gradient flow in recurrent nets: The difficulty of learning longterm dependencies," in Field Guide to Dynamical Recurrent Networks, J. Kolen and S. Kremer, Eds. Piscataway, NJ, USA: IEEE Press, 2000.
    • (2000) Field Guide to Dynamical Recurrent Networks
    • Hochreiter, S.1    Informatik, F.F.2    Bengio, Y.3    Frasconi, P.4    Schmidhuber, J.5
  • 9
    • 85054275611 scopus 로고    scopus 로고
    • Audio chord recognition with recurrent neural networks
    • N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Audio chord recognition with recurrent neural networks," in Proc. ISMIR, 2013, pp. 335-340.
    • (2013) Proc. ISMIR , pp. 335-340
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 10
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 12
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. ECCV, 2014, pp. 818-833.
    • (2014) Proc. ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 13
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 15
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet et al., "Overfeat: Integrated recognition, localization and detection using convolutional networks," in Proc. Int. Conf. Learn. Representations, 2014.
    • (2014) Proc. Int. Conf. Learn. Representations
    • Sermanet, P.1
  • 17
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and F.-F. Li, "Deep visual-semantic alignments for generating image descriptions," in Proc. Comput. Vis. Pattern Recog., 2015, pp. 3128-3137.
    • (2015) Proc. Comput. Vis. Pattern Recog. , pp. 3128-3137
    • Karpathy, A.1    Li, F.-F.2
  • 18
    • 84946802531 scopus 로고    scopus 로고
    • From captions to visual concepts and back
    • [Online]
    • H. Fang et al., "From captions to visual concepts and back," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1411.4952
    • (2014) CoRR
    • Fang, H.1
  • 19
    • 84951072975 scopus 로고    scopus 로고
    • Deep captioning with multimodal recurrent neural networks
    • J. Mao et al., "Deep captioning with multimodal recurrent neural networks," in Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Mao, J.1
  • 21
    • 84946802533 scopus 로고    scopus 로고
    • Unifying visual-semantic embeddings with multimodal neural language models
    • Dec. [Online]
    • R. Kiros, R. Salakhutdinov, and R. Zemel, "Unifying visual-semantic embeddings with multimodal neural language models," CoRR, Dec. 2014 [Online]. Available: http://arxiv.org/abs/1411.2539
    • (2014) CoRR
    • Kiros, R.1    Salakhutdinov, R.2    Zemel, R.3
  • 22
    • 84939821074 scopus 로고    scopus 로고
    • Show, attend and tell: Neural image caption generation with visual attention
    • K. Xu et al., "Show, attend and tell: Neural image caption generation with visual attention," in Proc. ICML, 2015.
    • (2015) Proc. ICML
    • Xu, K.1
  • 23
    • 84973884896 scopus 로고    scopus 로고
    • Describing videos by exploiting temporal structure
    • Dec accepted for publication
    • L. Yao et al., "Describing videos by exploiting temporal structure," in Proc. Int. Conf. Comput. Vis., Dec. 2015, accepted for publication.
    • (2015) Proc. Int. Conf. Comput. Vis.
    • Yao, L.1
  • 24
    • 84926283798 scopus 로고    scopus 로고
    • Recurrent continuous translation models
    • N. Kalchbrenner and P. Blunsom, "Recurrent continuous translation models," in Proc. EMNLP, 2013, pp. 1700-1709.
    • (2013) Proc. EMNLP , pp. 1700-1709
    • Kalchbrenner, N.1    Blunsom, P.2
  • 25
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural networks," in Proc. NIPS, 2014.
    • (2014) Proc. NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 26
    • 78149336740 scopus 로고    scopus 로고
    • Convolutional learning of spatio-temporal features
    • G. Taylor, R. Fergus, Y. LeCun, and C. Bregler, "Convolutional learning of spatio-temporal features," in ECCV, 2010, pp. 140-153.
    • (2010) ECCV , pp. 140-153
    • Taylor, G.1    Fergus, R.2    LeCun, Y.3    Bregler, C.4
  • 27
    • 34547970628 scopus 로고    scopus 로고
    • Three new graphical models for statistical language modelling
    • A. Mnih and G. E. Hinton, "Three new graphical models for statistical language modelling," in Proc. 4th Int. Conf. Mach. Learn., 2007, pp. 641-648.
    • (2007) Proc. 4th Int. Conf. Mach. Learn. , pp. 641-648
    • Mnih, A.1    Hinton, G.E.2
  • 28
    • 84944069490 scopus 로고    scopus 로고
    • Translating videos to natural language using deep recurrent neural networks
    • [Online]
    • S. Venugopalan et al., "Translating videos to natural language using deep recurrent neural networks," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1412.4729
    • (2014) CoRR
    • Venugopalan, S.1
  • 32
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," in Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 35
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 36
    • 0000999440 scopus 로고
    • Learning and relearning in boltzmann machines
    • Foundations, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA, MIT Press
    • G. E. Hinton and T. J. Sejnowski, "Learning and relearning in boltzmann machines," in Parallel Distributed Processing: Explorations in theMicrostructure of Cognition. Volume 1: Foundations, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA: MIT Press, 1986, pp. 282-317.
    • (1986) Parallel Distributed Processing: Explorations in TheMicrostructure of Cognition , vol.1 , pp. 282-317
    • Hinton, G.E.1    Sejnowski, T.J.2
  • 37
    • 84919825195 scopus 로고    scopus 로고
    • Estimating or propagating gradients through stochastic neurons for conditional computation
    • [Online]
    • Y. Bengio, N. Léonard, and A. Courville, "Estimating or propagating gradients through stochastic neurons for conditional computation," CoRR, 2013 [Online]. Available: http://arxiv.org/abs/1308.3432
    • (2013) CoRR
    • Bengio, Y.1    Léonard, N.2    Courville, A.3
  • 38
    • 84898947294 scopus 로고    scopus 로고
    • Learning stochastic feedforward neural networks
    • Y. Tang and R. Salakhutdinov, "Learning stochastic feedforward neural networks," in Proc. NIPS, 2013.
    • (2013) Proc. NIPS
    • Tang, Y.1    Salakhutdinov, R.2
  • 39
    • 84946802541 scopus 로고    scopus 로고
    • Multiple object recognition with visual attention
    • [Online]
    • J. Ba, V. Mnih, and K. Kavukcuoglu, "Multiple object recognition with visual attention," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1412.7755
    • (2014) CoRR
    • Ba, J.1    Mnih, V.2    Kavukcuoglu, K.3
  • 40
    • 85083952074 scopus 로고    scopus 로고
    • Techniques for learning binary stochastic feedforward neural networks
    • T. Raiko, M. Berglund, G. Alain, and L. Dinh, "Techniques for learning binary stochastic feedforward neural networks," in Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Raiko, T.1    Berglund, M.2    Alain, G.3    Dinh, L.4
  • 41
    • 85023772308 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • [Online]
    • A. Mnih and K. Gregor, "Neural variational inference and learning in belief networks," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1402.0030
    • (2014) CoRR
    • Mnih, A.1    Gregor, K.2
  • 42
    • 84943744936 scopus 로고    scopus 로고
    • On using very large target vocabulary for neural machine translation
    • S. Jean, K. Cho, R. Memisevic, and Y. Bengio, "On using very large target vocabulary for neural machine translation," in Proc. ACL-IJCNLP, 2015, pp. 1-10.
    • (2015) Proc. ACL-IJCNLP , pp. 1-10
    • Jean, S.1    Cho, K.2    Memisevic, R.3    Bengio, Y.4
  • 44
    • 84959109176 scopus 로고    scopus 로고
    • On using monolingual corpora in neural machine translation
    • [Online]
    • C. Gulcehre et al., "On using monolingual corpora in neural machine translation," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1503.03535
    • (2015) CoRR
    • Gulcehre, C.1
  • 45
    • 84952349296 scopus 로고    scopus 로고
    • Language models for image captioning: The quirks and what works
    • [Online]
    • J. Devlin et al., "Language models for image captioning: The quirks and what works," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1505.01809
    • (2015) CoRR
    • Devlin, J.1
  • 46
    • 84946802546 scopus 로고    scopus 로고
    • Long-term recurrent convolutional networks for visual recognition and description
    • [Online]
    • J. Donahue et al., "Long-term recurrent convolutional networks for visual recognition and description," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1411.4389
    • (2014) CoRR
    • Donahue, J.1
  • 47
    • 84883394520 scopus 로고    scopus 로고
    • Framing image description as a ranking task: Data, models and evaluation metrics
    • May
    • M. Hodosh, P. Young, and J. Hockenmaier, "Framing image description as a ranking task: Data, models and evaluation metrics," J. Artificial Intell. Res., vol. 47, no. 1, pp. 853-899, May 2013.
    • (2013) J. Artificial Intell. Res. , vol.47 , Issue.1 , pp. 853-899
    • Hodosh, M.1    Young, P.2    Hockenmaier, J.3
  • 48
    • 84906494296 scopus 로고    scopus 로고
    • From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
    • P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, "From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions," in Proc. TACL, 2014, vol. 2, pp. 67-78.
    • (2014) Proc. TACL , vol.2 , pp. 67-78
    • Young, P.1    Lai, A.2    Hodosh, M.3    Hockenmaier, J.4
  • 49
    • 84906493406 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • T.-Y. Lin et al., "Microsoft COCO: Common objects in context," in Proc. ECCV, 2014, pp. 740-755.
    • (2014) Proc. ECCV , pp. 740-755
    • Lin, T.-Y.1
  • 51
    • 84926007060 scopus 로고    scopus 로고
    • Meteor universal: Language specific translation evaluation for any target language
    • M. Denkowski and A. Lavie, "Meteor universal: Language specific translation evaluation for any target language," in Proc. EACL Workshop Statist. Mach. Transl., 2014.
    • (2014) Proc. EACL Workshop Statist. Mach. Transl.
    • Denkowski, M.1    Lavie, A.2
  • 52
    • 26944501715 scopus 로고    scopus 로고
    • Rouge: A package for automatic evaluation of summaries
    • C.-Y. Lin, "Rouge: A package for automatic evaluation of summaries," in Proc. ACL-04 Workshop, 2004, vol. 8, pp. 74-81.
    • (2004) Proc. ACL-04 Workshop , vol.8 , pp. 74-81
    • Lin, C.-Y.1
  • 53
    • 84959197551 scopus 로고    scopus 로고
    • CIDEr: Consensus-based image description evaluation
    • [Online]
    • R. Vedantam, C. L. Zitnick, and D. Parikh, "CIDEr: Consensus-based image description evaluation," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1411.5726
    • (2014) CoRR
    • Vedantam, R.1    Zitnick, C.L.2    Parikh, D.3
  • 55
    • 84946802548 scopus 로고    scopus 로고
    • Using descriptive video services to create a large data source for video annotation research
    • [Online]
    • A. Torabi, C. Pal, H. Larochelle, and A. Courville, "Using descriptive video services to create a large data source for video annotation research," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1503. 01070
    • (2015) CoRR
    • Torabi, A.1    Pal, C.2    Larochelle, H.3    Courville, A.4
  • 56
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Nov
    • G. E. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
    • (2012) IEEE Signal Process. Mag. , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.E.1
  • 57
    • 33749259827 scopus 로고    scopus 로고
    • Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
    • A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, "Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks," in Proc. ICML, 2006, pp. 369-376.
    • (2006) Proc. ICML , pp. 369-376
    • Graves, A.1    Fernández, S.2    Gomez, F.3    Schmidhuber, J.4
  • 58
    • 84919832465 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks
    • A. Graves and N. Jaitly, "Towards end-to-end speech recognition with recurrent neural networks," in Proc. ICML, 2014.
    • (2014) Proc. ICML
    • Graves, A.1    Jaitly, N.2
  • 59
    • 84946802549 scopus 로고    scopus 로고
    • Deep speech: Scaling up end-to-end speech recognition
    • [Online]
    • A. Hannun et al., "Deep speech: Scaling up end-to-end speech recognition," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1412.5567
    • (2014) CoRR
    • Hannun, A.1
  • 62
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • A. Graves, A.-R. Mohamed, and G. Hinton, "Speech recognition with deep recurrent neural networks," in Proc. ICASSP'2013, 2013, pp. 6645-6649.
    • (2013) Proc. ICASSP'2013 , pp. 6645-6649
    • Graves, A.1    Mohamed, A.-R.2    Hinton, G.3
  • 63
    • 84905252069 scopus 로고    scopus 로고
    • Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition
    • L. Tóth, "Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition," in Proc. ICASSP, 2014, pp. 190-194.
    • (2014) Proc. ICASSP , pp. 190-194
    • Tóth, L.1
  • 66
    • 84946802551 scopus 로고    scopus 로고
    • Weakly supervised memory networks
    • [Online]
    • S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, "Weakly supervised memory networks," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1503.08895
    • (2015) CoRR
    • Sukhbaatar, S.1    Szlam, A.2    Weston, J.3    Fergus, R.4
  • 67
    • 84937959846 scopus 로고    scopus 로고
    • Recurrent models of visual attention
    • Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds. Red Hook, NY, USA: Curran & Assoc.
    • V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, "Recurrent models of visual attention," in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds. Red Hook, NY, USA: Curran & Assoc., 2014, pp. 2204-2212.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 2204-2212
    • Mnih, V.1    Heess, N.2    Graves, A.3    Kavukcuoglu, K.4
  • 68
    • 84946802552 scopus 로고    scopus 로고
    • DRAW: A recurrent neural network for image generation
    • [Online]
    • K. Gregor, I. Danihelka, A. Graves, and D. Wierstra, "DRAW: A recurrent neural network for image generation," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1502.04623
    • (2015) CoRR
    • Gregor, K.1    Danihelka, I.2    Graves, A.3    Wierstra, D.4
  • 69
    • 85162061663 scopus 로고    scopus 로고
    • Learning to combine foveal glimpses with a third-order Boltzmann machine
    • H. Larochelle and G. E. Hinton, "Learning to combine foveal glimpses with a third-order Boltzmann machine," in Proc. Adv. Neural Inf. Process. Syst. 23, 2010, pp. 1243-1251.
    • (2010) Proc. Adv. Neural Inf. Process. Syst , vol.23 , pp. 1243-1251
    • Larochelle, H.1    Hinton, G.E.2
  • 70
    • 84867478719 scopus 로고    scopus 로고
    • Learning where to attend with deep architectures for image tracking
    • M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas, "Learning where to attend with deep architectures for image tracking," Neural Computation, vol. 24, no. 8, pp. 2151-2184, 2012.
    • (2012) Neural Computation , vol.24 , Issue.8 , pp. 2151-2184
    • Denil, M.1    Bazzani, L.2    Larochelle, H.3    De Freitas, N.4
  • 71
    • 84939873522 scopus 로고    scopus 로고
    • A neural autoregressive approach to attention-based recognition
    • Y. Zheng, R. S. Zemel, Y.-J. Zhang, and H. Larochelle, "A neural autoregressive approach to attention-based recognition," Int. J. Comput. Vis., vol. 113, no. 1, pp. 67-79, 2014.
    • (2014) Int. J. Comput. Vis. , vol.113 , Issue.1 , pp. 67-79
    • Zheng, Y.1    Zemel, R.S.2    Zhang, Y.-J.3    Larochelle, H.4
  • 73
    • 84946802554 scopus 로고    scopus 로고
    • Neural turing machines
    • [Online]
    • A. Graves, G. Wayne, and I. Danihelka, "Neural turing machines," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1410.5401
    • (2014) CoRR
    • Graves, A.1    Wayne, G.2    Danihelka, I.3
  • 74
    • 84946802555 scopus 로고    scopus 로고
    • Memory networks
    • [Online]
    • J. Weston, S. Chopra, and A. Bordes, "Memory networks," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1410.3916
    • (2014) CoRR
    • Weston, J.1    Chopra, S.2    Bordes, A.3
  • 75
    • 84913580275 scopus 로고    scopus 로고
    • Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses
    • Nov
    • L. Wehbe, B. Murphy, P. Talukdar, A. Fyshe, A. Ramdas, and T. Mitchell, "Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses," PLoS ONE, vol. 9, no. 11, p. e112575, Nov. 2014. The authors would like to thank the following for computing support: NSERC, FRQNT, Calcul Québec, Compute Canada, the Canada Research Chairs, CIFAR, and Samsung.
    • (2014) PLoS ONE , vol.9 , Issue.11 , pp. e112575
    • Wehbe, L.1    Murphy, B.2    Talukdar, P.3    Fyshe, A.4    Ramdas, A.5    Mitchell, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.