-
1
-
-
84887601544
-
BabyTalk: Understanding and generating simple image descriptions
-
Dec
-
G. Kulkarni et al., "BabyTalk: Understanding and generating simple image descriptions," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 2891-2903, Dec. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.12
, pp. 2891-2903
-
-
Kulkarni, G.1
-
2
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Computation
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
3
-
-
84961291190
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
Oct
-
K. Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," in Proc. Empiricial Methods Natural Language Process., Oct. 2014, pp. 1724-1734.
-
(2014)
Proc. Empiricial Methods Natural Language Process.
, pp. 1724-1734
-
-
Cho, K.1
-
4
-
-
84939821078
-
Empirical evaluation of gated recurrent neural networks on sequence modeling
-
J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," in Proc. NIPS Deep Learn. Workshop, 2014.
-
(2014)
Proc. NIPS Deep Learn. Workshop
-
-
Chung, J.1
Gulcehre, C.2
Cho, K.3
Bengio, Y.4
-
5
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Mar
-
Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
6
-
-
0041914606
-
Gradient flow in recurrent nets: The difficulty of learning longterm dependencies
-
J. Kolen and S. Kremer, Eds. Piscataway, NJ, USA, IEEE Press
-
S. Hochreiter, F. F. Informatik, Y. Bengio, P. Frasconi, and J. Schmidhuber, "Gradient flow in recurrent nets: The difficulty of learning longterm dependencies," in Field Guide to Dynamical Recurrent Networks, J. Kolen and S. Kremer, Eds. Piscataway, NJ, USA: IEEE Press, 2000.
-
(2000)
Field Guide to Dynamical Recurrent Networks
-
-
Hochreiter, S.1
Informatik, F.F.2
Bengio, Y.3
Frasconi, P.4
Schmidhuber, J.5
-
7
-
-
80051643236
-
Extensions of recurrent neural network language model
-
May
-
T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur, "Extensions of recurrent neural network language model," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 2011, pp. 5528-5531.
-
(2011)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process
, pp. 5528-5531
-
-
Mikolov, T.1
Kombrink, S.2
Burget, L.3
Cernocky, J.4
Khudanpur, S.5
-
9
-
-
85054275611
-
Audio chord recognition with recurrent neural networks
-
N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Audio chord recognition with recurrent neural networks," in Proc. ISMIR, 2013, pp. 335-340.
-
(2013)
Proc. ISMIR
, pp. 335-340
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
10
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
12
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. ECCV, 2014, pp. 818-833.
-
(2014)
Proc. ECCV
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
13
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
15
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet et al., "Overfeat: Integrated recognition, localization and detection using convolutional networks," in Proc. Int. Conf. Learn. Representations, 2014.
-
(2014)
Proc. Int. Conf. Learn. Representations
-
-
Sermanet, P.1
-
16
-
-
84908537903
-
CNN features off-The-Shelf: An astounding baseline for recognition
-
Jun
-
A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE Conf. IEEE Comput. Vis. Pattern Recog. Workshops, Jun. 2014, pp. 512-519.
-
(2014)
Proc. IEEE Conf. IEEE Comput. Vis. Pattern Recog. Workshops
, pp. 512-519
-
-
Razavian, A.S.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
17
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
A. Karpathy and F.-F. Li, "Deep visual-semantic alignments for generating image descriptions," in Proc. Comput. Vis. Pattern Recog., 2015, pp. 3128-3137.
-
(2015)
Proc. Comput. Vis. Pattern Recog.
, pp. 3128-3137
-
-
Karpathy, A.1
Li, F.-F.2
-
18
-
-
84946802531
-
From captions to visual concepts and back
-
[Online]
-
H. Fang et al., "From captions to visual concepts and back," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1411.4952
-
(2014)
CoRR
-
-
Fang, H.1
-
19
-
-
84951072975
-
Deep captioning with multimodal recurrent neural networks
-
J. Mao et al., "Deep captioning with multimodal recurrent neural networks," in Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Mao, J.1
-
20
-
-
84946747440
-
Show and tell: A neural image caption generator
-
O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, "Show and tell: A neural image caption generator," in Proc. Comput. Vis. Pattern Recog., 2015, pp. 3156-3164.
-
(2015)
Proc. Comput. Vis. Pattern Recog.
, pp. 3156-3164
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
21
-
-
84946802533
-
Unifying visual-semantic embeddings with multimodal neural language models
-
Dec. [Online]
-
R. Kiros, R. Salakhutdinov, and R. Zemel, "Unifying visual-semantic embeddings with multimodal neural language models," CoRR, Dec. 2014 [Online]. Available: http://arxiv.org/abs/1411.2539
-
(2014)
CoRR
-
-
Kiros, R.1
Salakhutdinov, R.2
Zemel, R.3
-
22
-
-
84939821074
-
Show, attend and tell: Neural image caption generation with visual attention
-
K. Xu et al., "Show, attend and tell: Neural image caption generation with visual attention," in Proc. ICML, 2015.
-
(2015)
Proc. ICML
-
-
Xu, K.1
-
23
-
-
84973884896
-
Describing videos by exploiting temporal structure
-
Dec accepted for publication
-
L. Yao et al., "Describing videos by exploiting temporal structure," in Proc. Int. Conf. Comput. Vis., Dec. 2015, accepted for publication.
-
(2015)
Proc. Int. Conf. Comput. Vis.
-
-
Yao, L.1
-
24
-
-
84926283798
-
Recurrent continuous translation models
-
N. Kalchbrenner and P. Blunsom, "Recurrent continuous translation models," in Proc. EMNLP, 2013, pp. 1700-1709.
-
(2013)
Proc. EMNLP
, pp. 1700-1709
-
-
Kalchbrenner, N.1
Blunsom, P.2
-
25
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural networks," in Proc. NIPS, 2014.
-
(2014)
Proc. NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
26
-
-
78149336740
-
Convolutional learning of spatio-temporal features
-
G. Taylor, R. Fergus, Y. LeCun, and C. Bregler, "Convolutional learning of spatio-temporal features," in ECCV, 2010, pp. 140-153.
-
(2010)
ECCV
, pp. 140-153
-
-
Taylor, G.1
Fergus, R.2
LeCun, Y.3
Bregler, C.4
-
27
-
-
34547970628
-
Three new graphical models for statistical language modelling
-
A. Mnih and G. E. Hinton, "Three new graphical models for statistical language modelling," in Proc. 4th Int. Conf. Mach. Learn., 2007, pp. 641-648.
-
(2007)
Proc. 4th Int. Conf. Mach. Learn.
, pp. 641-648
-
-
Mnih, A.1
Hinton, G.E.2
-
28
-
-
84944069490
-
Translating videos to natural language using deep recurrent neural networks
-
[Online]
-
S. Venugopalan et al., "Translating videos to natural language using deep recurrent neural networks," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1412.4729
-
(2014)
CoRR
-
-
Venugopalan, S.1
-
29
-
-
85097641926
-
On the properties of neural machine translation: Encoder-decoder approaches
-
Oct
-
K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, "On the properties of neural machine translation: Encoder-decoder approaches," in Proc. 8th Workshop Syntax, Semantics Struct. Statist. Transl., Oct. 2014, pp. 103-111.
-
(2014)
Proc. 8th Workshop Syntax, Semantics Struct. Statist. Transl.
, pp. 103-111
-
-
Cho, K.1
Van Merriënboer, B.2
Bahdanau, D.3
Bengio, Y.4
-
30
-
-
85083954305
-
Striving for simplicity: The all convolutional net
-
J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for simplicity: The all convolutional net," in Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.4
-
31
-
-
84937247245
-
-
Univ. of Oxford, Oxford, U.K., Tech. Rep
-
M. Denil, A. Demiraj, and N. de Freitas, "Extraction of salient sentences from labelled documents," Univ. of Oxford, Oxford, U.K., Tech. Rep, 2014.
-
(2014)
Extraction of Salient Sentences from Labelled Documents
-
-
Denil, M.1
Demiraj, A.2
De Freitas, N.3
-
32
-
-
85083953689
-
Neural machine translation by jointly learning to align and translate
-
D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," in Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Bahdanau, D.1
Cho, K.2
Bengio, Y.3
-
33
-
-
84965139600
-
Attention- based models for speech recognition
-
Dec accepted for publication
-
J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, "Attention- based models for speech recognition," in Proc. Adv. Neural Inf. Process. Syst. 27, Dec. 2015, accepted for publication.
-
(2015)
Proc. Adv. Neural Inf. Process. Syst
, vol.27
-
-
Chorowski, J.1
Bahdanau, D.2
Serdyuk, D.3
Cho, K.4
Bengio, Y.5
-
35
-
-
0022471098
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
36
-
-
0000999440
-
Learning and relearning in boltzmann machines
-
Foundations, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA, MIT Press
-
G. E. Hinton and T. J. Sejnowski, "Learning and relearning in boltzmann machines," in Parallel Distributed Processing: Explorations in theMicrostructure of Cognition. Volume 1: Foundations, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA: MIT Press, 1986, pp. 282-317.
-
(1986)
Parallel Distributed Processing: Explorations in TheMicrostructure of Cognition
, vol.1
, pp. 282-317
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
37
-
-
84919825195
-
Estimating or propagating gradients through stochastic neurons for conditional computation
-
[Online]
-
Y. Bengio, N. Léonard, and A. Courville, "Estimating or propagating gradients through stochastic neurons for conditional computation," CoRR, 2013 [Online]. Available: http://arxiv.org/abs/1308.3432
-
(2013)
CoRR
-
-
Bengio, Y.1
Léonard, N.2
Courville, A.3
-
38
-
-
84898947294
-
Learning stochastic feedforward neural networks
-
Y. Tang and R. Salakhutdinov, "Learning stochastic feedforward neural networks," in Proc. NIPS, 2013.
-
(2013)
Proc. NIPS
-
-
Tang, Y.1
Salakhutdinov, R.2
-
39
-
-
84946802541
-
Multiple object recognition with visual attention
-
[Online]
-
J. Ba, V. Mnih, and K. Kavukcuoglu, "Multiple object recognition with visual attention," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1412.7755
-
(2014)
CoRR
-
-
Ba, J.1
Mnih, V.2
Kavukcuoglu, K.3
-
40
-
-
85083952074
-
Techniques for learning binary stochastic feedforward neural networks
-
T. Raiko, M. Berglund, G. Alain, and L. Dinh, "Techniques for learning binary stochastic feedforward neural networks," in Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Raiko, T.1
Berglund, M.2
Alain, G.3
Dinh, L.4
-
41
-
-
85023772308
-
Neural variational inference and learning in belief networks
-
[Online]
-
A. Mnih and K. Gregor, "Neural variational inference and learning in belief networks," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1402.0030
-
(2014)
CoRR
-
-
Mnih, A.1
Gregor, K.2
-
42
-
-
84943744936
-
On using very large target vocabulary for neural machine translation
-
S. Jean, K. Cho, R. Memisevic, and Y. Bengio, "On using very large target vocabulary for neural machine translation," in Proc. ACL-IJCNLP, 2015, pp. 1-10.
-
(2015)
Proc. ACL-IJCNLP
, pp. 1-10
-
-
Jean, S.1
Cho, K.2
Memisevic, R.3
Bengio, Y.4
-
43
-
-
85122622861
-
Edinburgh's phrase-based machine translation systems for WMT-14
-
Baltimore, MD, USA
-
N. Durrani, B. Haddow, P. Koehn, and K. Heafield, "Edinburgh's phrase-based machine translation systems for WMT-14," in Proc. 9th Workshop Statist. Mach. Transl. Assoc. Comput. Linguistics, Baltimore, MD, USA, 2014, pp. 97-104.
-
(2014)
Proc. 9th Workshop Statist. Mach. Transl. Assoc. Comput. Linguistics
, pp. 97-104
-
-
Durrani, N.1
Haddow, B.2
Koehn, P.3
Heafield, K.4
-
44
-
-
84959109176
-
On using monolingual corpora in neural machine translation
-
[Online]
-
C. Gulcehre et al., "On using monolingual corpora in neural machine translation," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1503.03535
-
(2015)
CoRR
-
-
Gulcehre, C.1
-
45
-
-
84952349296
-
Language models for image captioning: The quirks and what works
-
[Online]
-
J. Devlin et al., "Language models for image captioning: The quirks and what works," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1505.01809
-
(2015)
CoRR
-
-
Devlin, J.1
-
46
-
-
84946802546
-
Long-term recurrent convolutional networks for visual recognition and description
-
[Online]
-
J. Donahue et al., "Long-term recurrent convolutional networks for visual recognition and description," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1411.4389
-
(2014)
CoRR
-
-
Donahue, J.1
-
47
-
-
84883394520
-
Framing image description as a ranking task: Data, models and evaluation metrics
-
May
-
M. Hodosh, P. Young, and J. Hockenmaier, "Framing image description as a ranking task: Data, models and evaluation metrics," J. Artificial Intell. Res., vol. 47, no. 1, pp. 853-899, May 2013.
-
(2013)
J. Artificial Intell. Res.
, vol.47
, Issue.1
, pp. 853-899
-
-
Hodosh, M.1
Young, P.2
Hockenmaier, J.3
-
48
-
-
84906494296
-
From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
-
P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, "From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions," in Proc. TACL, 2014, vol. 2, pp. 67-78.
-
(2014)
Proc. TACL
, vol.2
, pp. 67-78
-
-
Young, P.1
Lai, A.2
Hodosh, M.3
Hockenmaier, J.4
-
49
-
-
84906493406
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin et al., "Microsoft COCO: Common objects in context," in Proc. ECCV, 2014, pp. 740-755.
-
(2014)
Proc. ECCV
, pp. 740-755
-
-
Lin, T.-Y.1
-
50
-
-
85133336275
-
Bleu: A method for automatic evaluation of machine translation
-
K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, "Bleu: A method for automatic evaluation of machine translation," in Proc. 40th Annu. Meeting Assoc. Comput. Linguistics, 2002, pp. 311-318.
-
(2002)
Proc. 40th Annu. Meeting Assoc. Comput. Linguistics
, pp. 311-318
-
-
Papineni, K.1
Roukos, S.2
Ward, T.3
Zhu, W.-J.4
-
51
-
-
84926007060
-
Meteor universal: Language specific translation evaluation for any target language
-
M. Denkowski and A. Lavie, "Meteor universal: Language specific translation evaluation for any target language," in Proc. EACL Workshop Statist. Mach. Transl., 2014.
-
(2014)
Proc. EACL Workshop Statist. Mach. Transl.
-
-
Denkowski, M.1
Lavie, A.2
-
52
-
-
26944501715
-
Rouge: A package for automatic evaluation of summaries
-
C.-Y. Lin, "Rouge: A package for automatic evaluation of summaries," in Proc. ACL-04 Workshop, 2004, vol. 8, pp. 74-81.
-
(2004)
Proc. ACL-04 Workshop
, vol.8
, pp. 74-81
-
-
Lin, C.-Y.1
-
53
-
-
84959197551
-
CIDEr: Consensus-based image description evaluation
-
[Online]
-
R. Vedantam, C. L. Zitnick, and D. Parikh, "CIDEr: Consensus-based image description evaluation," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1411.5726
-
(2014)
CoRR
-
-
Vedantam, R.1
Zitnick, C.L.2
Parikh, D.3
-
55
-
-
84946802548
-
Using descriptive video services to create a large data source for video annotation research
-
[Online]
-
A. Torabi, C. Pal, H. Larochelle, and A. Courville, "Using descriptive video services to create a large data source for video annotation research," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1503. 01070
-
(2015)
CoRR
-
-
Torabi, A.1
Pal, C.2
Larochelle, H.3
Courville, A.4
-
56
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov
-
G. E. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.E.1
-
57
-
-
33749259827
-
Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
-
A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, "Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks," in Proc. ICML, 2006, pp. 369-376.
-
(2006)
Proc. ICML
, pp. 369-376
-
-
Graves, A.1
Fernández, S.2
Gomez, F.3
Schmidhuber, J.4
-
58
-
-
84919832465
-
Towards end-to-end speech recognition with recurrent neural networks
-
A. Graves and N. Jaitly, "Towards end-to-end speech recognition with recurrent neural networks," in Proc. ICML, 2014.
-
(2014)
Proc. ICML
-
-
Graves, A.1
Jaitly, N.2
-
59
-
-
84946802549
-
Deep speech: Scaling up end-to-end speech recognition
-
[Online]
-
A. Hannun et al., "Deep speech: Scaling up end-to-end speech recognition," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1412.5567
-
(2014)
CoRR
-
-
Hannun, A.1
-
60
-
-
85083951919
-
How to construct deep recurrent neural networks
-
R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, "How to construct deep recurrent neural networks," in Proc. ICLR, 2014.
-
(2014)
Proc. ICLR
-
-
Pascanu, R.1
Gulcehre, C.2
Cho, K.3
Bengio, Y.4
-
61
-
-
0003548585
-
-
NASA STI, Hampton, VA, USA, Tech. Rep. NISTIR 4930
-
J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, "DARPA TIMIT acoustic-phonetic continous speech corpus," NASA STI, Hampton, VA, USA, Tech. Rep. NISTIR 4930, 1993, vol. 93.
-
(1993)
DARPA TIMIT Acoustic-phonetic Continous Speech Corpus
, vol.93
-
-
Garofolo, J.S.1
Lamel, L.F.2
Fisher, W.M.3
Fiscus, J.G.4
Pallett, D.S.5
-
62
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
A. Graves, A.-R. Mohamed, and G. Hinton, "Speech recognition with deep recurrent neural networks," in Proc. ICASSP'2013, 2013, pp. 6645-6649.
-
(2013)
Proc. ICASSP'2013
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.-R.2
Hinton, G.3
-
63
-
-
84905252069
-
Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition
-
L. Tóth, "Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition," in Proc. ICASSP, 2014, pp. 190-194.
-
(2014)
Proc. ICASSP
, pp. 190-194
-
-
Tóth, L.1
-
64
-
-
85012012045
-
Grammar as a foreign language
-
[Online]
-
O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton, "Grammar as a foreign language," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1412.7449
-
(2014)
CoRR
-
-
Vinyals, O.1
Kaiser, L.2
Koo, T.3
Petrov, S.4
Sutskever, I.5
Hinton, G.6
-
66
-
-
84946802551
-
Weakly supervised memory networks
-
[Online]
-
S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, "Weakly supervised memory networks," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1503.08895
-
(2015)
CoRR
-
-
Sukhbaatar, S.1
Szlam, A.2
Weston, J.3
Fergus, R.4
-
67
-
-
84937959846
-
Recurrent models of visual attention
-
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds. Red Hook, NY, USA: Curran & Assoc.
-
V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, "Recurrent models of visual attention," in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds. Red Hook, NY, USA: Curran & Assoc., 2014, pp. 2204-2212.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 2204-2212
-
-
Mnih, V.1
Heess, N.2
Graves, A.3
Kavukcuoglu, K.4
-
68
-
-
84946802552
-
DRAW: A recurrent neural network for image generation
-
[Online]
-
K. Gregor, I. Danihelka, A. Graves, and D. Wierstra, "DRAW: A recurrent neural network for image generation," CoRR, 2015 [Online]. Available: http://arxiv.org/abs/1502.04623
-
(2015)
CoRR
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Wierstra, D.4
-
69
-
-
85162061663
-
Learning to combine foveal glimpses with a third-order Boltzmann machine
-
H. Larochelle and G. E. Hinton, "Learning to combine foveal glimpses with a third-order Boltzmann machine," in Proc. Adv. Neural Inf. Process. Syst. 23, 2010, pp. 1243-1251.
-
(2010)
Proc. Adv. Neural Inf. Process. Syst
, vol.23
, pp. 1243-1251
-
-
Larochelle, H.1
Hinton, G.E.2
-
70
-
-
84867478719
-
Learning where to attend with deep architectures for image tracking
-
M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas, "Learning where to attend with deep architectures for image tracking," Neural Computation, vol. 24, no. 8, pp. 2151-2184, 2012.
-
(2012)
Neural Computation
, vol.24
, Issue.8
, pp. 2151-2184
-
-
Denil, M.1
Bazzani, L.2
Larochelle, H.3
De Freitas, N.4
-
71
-
-
84939873522
-
A neural autoregressive approach to attention-based recognition
-
Y. Zheng, R. S. Zemel, Y.-J. Zhang, and H. Larochelle, "A neural autoregressive approach to attention-based recognition," Int. J. Comput. Vis., vol. 113, no. 1, pp. 67-79, 2014.
-
(2014)
Int. J. Comput. Vis.
, vol.113
, Issue.1
, pp. 67-79
-
-
Zheng, Y.1
Zemel, R.S.2
Zhang, Y.-J.3
Larochelle, H.4
-
72
-
-
85083954205
-
Sequentially generated instance-dependent image representations for classification
-
G. Dulac-Arnold, L. Denoyer, N. Thome, M. Cord, and P. Gallinari, "Sequentially generated instance-dependent image representations for classification," in Proc. Int. Conf. Learn. Representations, 2014.
-
(2014)
Proc. Int. Conf. Learn. Representations
-
-
Dulac-Arnold, G.1
Denoyer, L.2
Thome, N.3
Cord, M.4
Gallinari, P.5
-
73
-
-
84946802554
-
Neural turing machines
-
[Online]
-
A. Graves, G. Wayne, and I. Danihelka, "Neural turing machines," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1410.5401
-
(2014)
CoRR
-
-
Graves, A.1
Wayne, G.2
Danihelka, I.3
-
74
-
-
84946802555
-
Memory networks
-
[Online]
-
J. Weston, S. Chopra, and A. Bordes, "Memory networks," CoRR, 2014 [Online]. Available: http://arxiv.org/abs/1410.3916
-
(2014)
CoRR
-
-
Weston, J.1
Chopra, S.2
Bordes, A.3
-
75
-
-
84913580275
-
Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses
-
Nov
-
L. Wehbe, B. Murphy, P. Talukdar, A. Fyshe, A. Ramdas, and T. Mitchell, "Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses," PLoS ONE, vol. 9, no. 11, p. e112575, Nov. 2014. The authors would like to thank the following for computing support: NSERC, FRQNT, Calcul Québec, Compute Canada, the Canada Research Chairs, CIFAR, and Samsung.
-
(2014)
PLoS ONE
, vol.9
, Issue.11
, pp. e112575
-
-
Wehbe, L.1
Murphy, B.2
Talukdar, P.3
Fyshe, A.4
Ramdas, A.5
Mitchell, T.6
|