메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 577-585

Attention-based models for speech recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER AIDED LANGUAGE TRANSLATION; INFORMATION SCIENCE;

EID: 84965139600     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2607)

References (30)
  • 2
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • arXiv:1409.0473
    • D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In Proc. of the 3rd ICLR, 2015. arXiv:1409.0473.
    • (2015) Proc. of the 3rd ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 3
    • 84970002232 scopus 로고    scopus 로고
    • Show, attend and tell: Neural image caption generation with visual attention
    • arXiv:1502.03044
    • K. Xu, J. Ba, R. Kiros, et al. Show, attend and tell: Neural image caption generation with visual attention. In Proc. of the 32nd ICML, 2015. arXiv:1502.03044.
    • (2015) Proc. of the 32nd ICML
    • Xu, K.1    Ba, J.2    Kiros, R.3
  • 4
    • 84937959846 scopus 로고    scopus 로고
    • Recurrent models of visual attention
    • arXiv:1406.6247
    • V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In Proc. of the 27th NIPS, 2014. arXiv:1406.6247.
    • (2014) Proc. of the 27th NIPS
    • Mnih, V.1    Heess, N.2    Graves, A.3
  • 8
    • 70349227947 scopus 로고    scopus 로고
    • The application of hidden markov models in speech recognition
    • January
    • M. Gales and S. Young. The application of hidden markov models in speech recognition. Found. Trends Signal Process., 1(3):195-304, January 2007.
    • (2007) Found. Trends Signal Process. , vol.1 , Issue.3 , pp. 195-304
    • Gales, M.1    Young, S.2
  • 9
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • November
    • G. Hinton, L. Deng, D. Yu, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82-97, November 2012.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3
  • 12
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using RNN encoderdecoder for statistical machine translation
    • October, to appear
    • K. Cho, B. van Merrienboer, C. Gulcehre, et al. Learning phrase representations using RNN encoderdecoder for statistical machine translation. In EMNLP, October 2014. to appear.
    • (2014) EMNLP
    • Cho, K.1    Van Merrienboer, B.2    Gulcehre, C.3
  • 13
    • 33749259827 scopus 로고    scopus 로고
    • Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
    • A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In Proc. of the 23rd ICML-06, 2006.
    • (2006) Proc. of the 23rd ICML-06
    • Graves, A.1    Fernández, S.2    Gomez, F.3    Schmidhuber, J.4
  • 14
    • 84897549167 scopus 로고    scopus 로고
    • Sequence transduction with recurrent neural networks
    • A. Graves. Sequence transduction with recurrent neural networks. In Proc. of the 29th ICML, 2012.
    • (2012) Proc. of the 29th ICML
    • Graves, A.1
  • 16
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • IEEE
    • A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In ICASSP 2013, pages 6645-6649. IEEE, 2013.
    • (2013) ICASSP 2013 , pp. 6645-6649
    • Graves, A.1    Mohamed A-2    Hinton, G.3
  • 17
    • 84919832465 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks
    • A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In Proc. of the 31st ICML, 2014.
    • (2014) Proc. of the 31st ICML
    • Graves, A.1    Jaitly, N.2
  • 22
    • 85162557101 scopus 로고    scopus 로고
    • Practical variational inference for neural networks
    • A. Graves. Practical variational inference for neural networks. In Proc of the 24th NIPS, 2011.
    • (2011) Proc of the 24th NIPS
    • Graves, A.1
  • 24
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • arXiv:1409.3215
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Proc. of the 27th NIPS, 2014. arXiv:1409.3215.
    • (2014) Proc. of the 27th NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 25
    • 84905252069 scopus 로고    scopus 로고
    • Combining time- and frequency-domain convolution in convolutional neural network-based phone recognition
    • L. Tóth. Combining time- and frequency-domain convolution in convolutional neural network-based phone recognition. In Proc. ICASSP, 2014.
    • (2014) Proc. ICASSP
    • Tóth, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.