메뉴 건너뛰기




Volumn 16, Issue 11, 2015, Pages 647-659

Proliferation control in neural stem and progenitor cells

Author keywords

[No Author keywords available]

Indexed keywords

AGE; ALEXANDER DISEASE; ASYMMETRIC CELL DIVISION; BRAIN DEVELOPMENT; CELL CYCLE REGULATION; CELL LINEAGE; CELL PROLIFERATION; DEVELOPMENTAL STAGE; DROSOPHILA MELANOGASTER; ENDOCRINE FUNCTION; HUMAN; MAMMAL; METABOLISM; MICROCEPHALY; NERVE CELL DIFFERENTIATION; NERVOUS SYSTEM DEVELOPMENT; NEURAL STEM CELL; NONHUMAN; NUTRITION; PRIORITY JOURNAL; REVIEW; STEM CELL; STEM CELL RESEARCH; ANIMAL; CYTOLOGY; GLIA; GROWTH, DEVELOPMENT AND AGING; MOUSE; NEOCORTEX; PATHOLOGY; PHYSIOLOGY;

EID: 84945469911     PISSN: 1471003X     EISSN: 14710048     Source Type: Journal    
DOI: 10.1038/nrn4021     Document Type: Review
Times cited : (257)

References (171)
  • 1
    • 0032568795 scopus 로고    scopus 로고
    • Coordination of growth and cell division in the Drosophila wing
    • Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183-1193 (1998).
    • (1998) Cell , vol.93 , pp. 1183-1193
    • Neufeld, T.P.1    De La Cruz, A.F.2    Johnston, L.A.3    Edgar, B.A.4
  • 2
    • 84875814317 scopus 로고    scopus 로고
    • Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system
    • Lanet, E., Gould, A. P. & Maurange, C. Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system. Cell Rep. 3, 587-594 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 587-594
    • Lanet, E.1    Gould, A.P.2    Maurange, C.3
  • 3
    • 84894032413 scopus 로고    scopus 로고
    • Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors
    • Janssens, D. H. et al. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors. Development 141, 1036-1046 (2014).
    • (2014) Development , vol.141 , pp. 1036-1046
    • Janssens, D.H.1
  • 4
    • 84910092651 scopus 로고    scopus 로고
    • Deterministic progenitor behavior and unitary production of neurons in the neocortex
    • Gao, P. et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159, 775-788 (2014).
    • (2014) Cell , vol.159 , pp. 775-788
    • Gao, P.1
  • 5
    • 84891521092 scopus 로고    scopus 로고
    • Drosophila intermediate neural progenitors produce lineage-dependent related series of diverse neurons
    • Wang, Y. C. et al. Drosophila intermediate neural progenitors produce lineage-dependent related series of diverse neurons. Development 141, 253-258 (2014).
    • (2014) Development , vol.141 , pp. 253-258
    • Wang, Y.C.1
  • 6
    • 79956209852 scopus 로고    scopus 로고
    • Adult neurogenesis in the mammalian brain: Significant answers and significant questions
    • Ming, G. L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687-702 (2011).
    • (2011) Neuron , vol.70 , pp. 687-702
    • Ming, G.L.1    Song, H.2
  • 7
    • 84868545441 scopus 로고    scopus 로고
    • Drosophila neuroblasts: A model for stem cell biology
    • Homem, C. C. & Knoblich, J. A. Drosophila neuroblasts: a model for stem cell biology. Development 139, 4297-4310 (2012).
    • (2012) Development , vol.139 , pp. 4297-4310
    • Homem, C.C.1    Knoblich, J.A.2
  • 8
    • 84862822258 scopus 로고    scopus 로고
    • Balancing self-renewal and differentiation by asymmetric division: Insights from brain tumor suppressors in Drosophila neural stem cells
    • Chang, K. C., Wang, C. & Wang, H. Balancing self-renewal and differentiation by asymmetric division: Insights from brain tumor suppressors in Drosophila neural stem cells. Bioessays 34, 301-310 (2012).
    • (2012) Bioessays , vol.34 , pp. 301-310
    • Chang, K.C.1    Wang, C.2    Wang, H.3
  • 9
    • 84994876683 scopus 로고    scopus 로고
    • The drosophila sp8 transcription factor buttonhead prevents premature differentiation of intermediate neural progenitors
    • Xie, Y. et al. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors. eLife 3, e03596 (2014).
    • (2014) ELife , vol.3 , pp. e03596
    • Xie, Y.1
  • 10
    • 84855477942 scopus 로고    scopus 로고
    • Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains
    • Zhu, S., Barshow, S., Wildonger, J., Jan, L. Y. & Jan, Y. N. Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc. Natl Acad. Sci. USA 108, 20615-20620 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 20615-20620
    • Zhu, S.1    Barshow, S.2    Wildonger, J.3    Jan, L.Y.4    Jan, Y.N.5
  • 11
    • 84934287557 scopus 로고    scopus 로고
    • Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor Buttonhead
    • Komori, H., Xiao, Q., Janssens, D. H., Dou, Y. & Lee, C. Y. Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor Buttonhead. eLife 3, e03502 (2014).
    • (2014) ELife , vol.3 , pp. e03502
    • Komori, H.1    Xiao, Q.2    Janssens, D.H.3    Dou, Y.4    Lee, C.Y.5
  • 12
    • 84866788234 scopus 로고    scopus 로고
    • Klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division
    • Xiao, Q., Komori, H. & Lee, C. Y. klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development 139, 2670-2680 (2012).
    • (2012) Development , vol.139 , pp. 2670-2680
    • Xiao, Q.1    Komori, H.2    Lee, C.Y.3
  • 13
    • 41649093071 scopus 로고    scopus 로고
    • The tumor suppressors Brat and Numb regulate transit-Amplifying neuroblast lineages in Drosophila
    • Bowman, S. K. et al. The tumor suppressors Brat and Numb regulate transit-Amplifying neuroblast lineages in Drosophila. Dev. Cell 14, 535-546 (2008).
    • (2008) Dev. Cell , vol.14 , pp. 535-546
    • Bowman, S.K.1
  • 14
    • 33845704687 scopus 로고    scopus 로고
    • Aurora A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts
    • Wang, H. et al. Aurora A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 20, 3453-3463 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 3453-3463
    • Wang, H.1
  • 15
    • 28444435117 scopus 로고    scopus 로고
    • Regulation of post-embryonic neuroblasts by Drosophila Grainyhead
    • Almeida, M. S. & Bray, S. J. Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech. Dev. 122, 1282-1293 (2005).
    • (2005) Mech. Dev. , vol.122 , pp. 1282-1293
    • Almeida, M.S.1    Bray, S.J.2
  • 16
    • 84865761331 scopus 로고    scopus 로고
    • FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self-renewal
    • Berger, C. et al. FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep. 2, 407-418 (2012).
    • (2012) Cell Rep. , vol.2 , pp. 407-418
    • Berger, C.1
  • 17
    • 84857925453 scopus 로고    scopus 로고
    • BHLH O proteins are crucial for Drosophila neuroblast self-renewal and mediate Notch-induced overproliferation
    • Zacharioudaki, E. & Magadi, S. S. & Delidakis, C. bHLH O proteins are crucial for Drosophila neuroblast self-renewal and mediate Notch-induced overproliferation. Development 139, 1258-1269 (2012).
    • (2012) Development , vol.139 , pp. 1258-1269
    • Zacharioudaki, E.1    Magadi, S.S.2    Delidakis, C.3
  • 18
    • 79952190285 scopus 로고    scopus 로고
    • The bHLH factor deadpan is a direct target of Notch signaling and regulates neuroblast self-renewal in Drosophila
    • San-Juán, B. P. & Baonza, A. The bHLH factor deadpan is a direct target of Notch signaling and regulates neuroblast self-renewal in Drosophila. Dev. Biol. 352, 70-82 (2011).
    • (2011) Dev. Biol. , vol.352 , pp. 70-82
    • San-Juán, B.P.1    Baonza, A.2
  • 19
    • 84155197399 scopus 로고    scopus 로고
    • Regulation of cell growth by Notch signaling and its differential requirement in normal versus tumor-forming stem cells in Drosophila
    • Song, Y. & Lu, B. Regulation of cell growth by Notch signaling and its differential requirement in normal versus tumor-forming stem cells in Drosophila. Genes Dev. 25, 2644-2658 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 2644-2658
    • Song, Y.1    Lu, B.2
  • 20
    • 1242265691 scopus 로고    scopus 로고
    • Notch signaling activity
    • Schweisguth, F. Notch signaling activity. Curr. Biol. 14, R129-R138 (2004).
    • (2004) Curr. Biol. , vol.14 , pp. R129-R138
    • Schweisguth, F.1
  • 21
    • 84856426010 scopus 로고    scopus 로고
    • Endocytosis by Numb breaks Notch symmetry at cytokinesis
    • Couturier, L., Vodovar, N. & Schweisguth, F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat. Cell Biol. 14, 131-139 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 131-139
    • Couturier, L.1    Vodovar, N.2    Schweisguth, F.3
  • 22
    • 78651438047 scopus 로고    scopus 로고
    • Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling
    • Harris, R. E., Pargett, M., Sutcliffe, C., Umulis, D. & Ashe, H. L. Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling. Dev. Cell 20, 72-83 (2011).
    • (2011) Dev. Cell , vol.20 , pp. 72-83
    • Harris, R.E.1    Pargett, M.2    Sutcliffe, C.3    Umulis, D.4    Ashe, H.L.5
  • 23
    • 84923519032 scopus 로고    scopus 로고
    • The TRIM-NHL protein Brat promotes axon maintenance by repressing src64B expression
    • Marchetti, G., Reichardt, I., Knoblich, J. A. & Besse, F. The TRIM-NHL protein Brat promotes axon maintenance by repressing src64B expression. J. Neurosci. 34, 13855-13864 (2014).
    • (2014) J. Neurosci. , vol.34 , pp. 13855-13864
    • Marchetti, G.1    Reichardt, I.2    Knoblich, J.A.3    Besse, F.4
  • 24
    • 74049157004 scopus 로고    scopus 로고
    • DFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila
    • Weng, M., Golden, K. L. & Lee, C. Y. dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev. Cell 18, 126-135 (2010).
    • (2010) Dev. Cell , vol.18 , pp. 126-135
    • Weng, M.1    Golden, K.L.2    Lee, C.Y.3
  • 25
    • 84898739962 scopus 로고    scopus 로고
    • The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages
    • Koe, C. T. et al. The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages. eLife 3, e01906 (2014).
    • (2014) ELife , vol.3 , pp. e01906
    • Koe, C.T.1
  • 26
    • 84896350666 scopus 로고    scopus 로고
    • SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells
    • Eroglu, E. et al. SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell 156, 1259-1273 (2014).
    • (2014) Cell , vol.156 , pp. 1259-1273
    • Eroglu, E.1
  • 27
    • 29144469234 scopus 로고    scopus 로고
    • The novel roles of glial cells revisited: The contribution of radial glia and astrocytes to neurogenesis
    • Mori, T., Buffo, A. & Gotz, M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr. Top. Dev. Biol. 69, 67-99 (2005).
    • (2005) Curr. Top. Dev. Biol. , vol.69 , pp. 67-99
    • Mori, T.1    Buffo, A.2    Gotz, M.3
  • 29
    • 1642458489 scopus 로고    scopus 로고
    • Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases
    • Noctor, S. C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136-144 (2004).
    • (2004) Nat. Neurosci. , vol.7 , pp. 136-144
    • Noctor, S.C.1    Martínez-Cerdeño, V.2    Ivic, L.3    Kriegstein, A.R.4
  • 30
    • 37149046732 scopus 로고    scopus 로고
    • Role of intermediate progenitor cells in cerebral cortex development
    • Pontious, A., Kowalczyk, T., Englund, C. & Hevner, R. F. Role of intermediate progenitor cells in cerebral cortex development. Dev. Neurosci. 30, 24-32 (2008).
    • (2008) Dev. Neurosci. , vol.30 , pp. 24-32
    • Pontious, A.1    Kowalczyk, T.2    Englund, C.3    Hevner, R.F.4
  • 31
    • 32544445546 scopus 로고    scopus 로고
    • Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones
    • Gal, J. S. et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J. Neurosci. 26, 1045-1056 (2006).
    • (2006) J. Neurosci. , vol.26 , pp. 1045-1056
    • Gal, J.S.1
  • 32
    • 77952642527 scopus 로고    scopus 로고
    • Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex
    • Stancik, E. K., Navarro-Quiroga, I., Sellke, R. & Haydar, T. F. Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J. Neurosci. 30, 7028-7036 (2010).
    • (2010) J. Neurosci. , vol.30 , pp. 7028-7036
    • Stancik, E.K.1    Navarro-Quiroga, I.2    Sellke, R.3    Haydar, T.F.4
  • 33
    • 77950076985 scopus 로고    scopus 로고
    • Neurogenic radial glia in the outer subventricular zone of human neocortex
    • Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554-561 (2010).
    • (2010) Nature , vol.464 , pp. 554-561
    • Hansen, D.V.1    Lui, J.H.2    Parker, P.R.3    Kriegstein, A.R.4
  • 34
    • 79959426933 scopus 로고    scopus 로고
    • A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex
    • Reillo, I., de Juan Romero, C., García-Cabezas, M. A. & Borrell, V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674-1694 (2011).
    • (2011) Cereb. Cortex , vol.21 , pp. 1674-1694
    • Reillo, I.1    De Juan Romero, C.2    García-Cabezas, M.A.3    Borrell, V.4
  • 35
    • 84863490484 scopus 로고    scopus 로고
    • Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus
    • Kelava, I. et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb. Cortex 22, 469-481 (2012).
    • (2012) Cereb. Cortex , vol.22 , pp. 469-481
    • Kelava, I.1
  • 36
    • 84885728828 scopus 로고    scopus 로고
    • Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate
    • Betizeau, M. et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80, 442-457 (2013).
    • (2013) Neuron , vol.80 , pp. 442-457
    • Betizeau, M.1
  • 37
    • 0029080470 scopus 로고
    • Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis
    • Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631-641 (1995).
    • (1995) Cell , vol.82 , pp. 631-641
    • Chenn, A.1    McConnell, S.K.2
  • 38
    • 0030200217 scopus 로고    scopus 로고
    • Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis
    • Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43-53 (1996).
    • (1996) Neuron , vol.17 , pp. 43-53
    • Zhong, W.1    Feder, J.N.2    Jiang, M.M.3    Jan, L.Y.4    Jan, Y.N.5
  • 39
    • 3042541528 scopus 로고    scopus 로고
    • Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells
    • Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314-2324 (2004).
    • (2004) EMBO J. , vol.23 , pp. 2314-2324
    • Kosodo, Y.1
  • 40
    • 33744794908 scopus 로고    scopus 로고
    • Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization
    • Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat. Cell Biol. 8, 586-593 (2006).
    • (2006) Nat. Cell Biol. , vol.8 , pp. 586-593
    • Izumi, Y.1    Ohta, N.2    Hisata, K.3    Raabe, T.4    Matsuzaki, F.5
  • 41
    • 80054841867 scopus 로고    scopus 로고
    • Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex
    • Postiglione, M. P. et al. Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72, 269-284 (2011).
    • (2011) Neuron , vol.72 , pp. 269-284
    • Postiglione, M.P.1
  • 42
    • 35548951453 scopus 로고    scopus 로고
    • Control of planar divisions by the G protein regulator LGN maintains progenitors in the chick neuroepithelium
    • Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 10, 1440-1448 (2007).
    • (2007) Nat. Neurosci. , vol.10 , pp. 1440-1448
    • Morin, X.1    Jaouen, F.2    Durbec, P.3
  • 43
    • 37749022460 scopus 로고    scopus 로고
    • Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis
    • Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93-101 (2008).
    • (2008) Nat. Cell Biol. , vol.10 , pp. 93-101
    • Konno, D.1
  • 44
    • 0037352776 scopus 로고    scopus 로고
    • A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts
    • Yu, F. et al. A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts. J. Cell Sci. 116, 887-896 (2003).
    • (2003) J. Cell Sci. , vol.116 , pp. 887-896
    • Yu, F.1
  • 45
    • 84905166079 scopus 로고    scopus 로고
    • Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division
    • Mora-Bermudez, F., Matsuzaki, F. & Huttner, W. B. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. eLife 3, e02875 (2014).
    • (2014) ELife , vol.3 , pp. e02875
    • Mora-Bermudez, F.1    Matsuzaki, F.2    Huttner, W.B.3
  • 46
    • 79952381377 scopus 로고    scopus 로고
    • Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors
    • Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683-3695 (2011).
    • (2011) J. Neurosci. , vol.31 , pp. 3683-3695
    • Shitamukai, A.1    Konno, D.2    Matsuzaki, F.3
  • 47
    • 67650898238 scopus 로고    scopus 로고
    • Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex
    • Bultje, R. S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189-202 (2009).
    • (2009) Neuron , vol.63 , pp. 189-202
    • Bultje, R.S.1
  • 48
    • 78650501049 scopus 로고    scopus 로고
    • Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts
    • Conduit, P. T. & Raff, J. W. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20, 2187-2192 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 2187-2192
    • Conduit, P.T.1    Raff, J.W.2
  • 50
    • 70350061953 scopus 로고    scopus 로고
    • Asymmetric centrosome inheritance maintains neural progenitors in the neocortex
    • Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947-955 (2009).
    • (2009) Nature , vol.461 , pp. 947-955
    • Wang, X.1
  • 51
    • 77951101203 scopus 로고    scopus 로고
    • The primary cilium: A signalling centre during vertebrate development
    • Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331-344 (2010).
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 331-344
    • Goetz, S.C.1    Anderson, K.V.2
  • 52
    • 84885673303 scopus 로고    scopus 로고
    • Asymmetric inheritance of centrosome-Associated primary cilium membrane directs ciliogenesis after cell division
    • Paridaen, J. T., Wilsch-Brauninger, M. & Huttner, W. B. Asymmetric inheritance of centrosome-Associated primary cilium membrane directs ciliogenesis after cell division. Cell 155, 333-344 (2013).
    • (2013) Cell , vol.155 , pp. 333-344
    • Paridaen, J.T.1    Wilsch-Brauninger, M.2    Huttner, W.B.3
  • 54
    • 79952213043 scopus 로고    scopus 로고
    • Notch in the vertebrate nervous system: An old dog with new tricks
    • Pierfelice, T., Alberi, L. & Gaiano, N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69, 840-855 (2011).
    • (2011) Neuron , vol.69 , pp. 840-855
    • Pierfelice, T.1    Alberi, L.2    Gaiano, N.3
  • 55
    • 59749104309 scopus 로고    scopus 로고
    • Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon
    • Kawaguchi, D., Yoshimatsu, T., Hozumi, K. & Gotoh, Y. Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135, 3849-3858 (2008).
    • (2008) Development , vol.135 , pp. 3849-3858
    • Kawaguchi, D.1    Yoshimatsu, T.2    Hozumi, K.3    Gotoh, Y.4
  • 56
    • 43449125262 scopus 로고    scopus 로고
    • Mind bomb 1 expressing intermediate progenitors generate notch signaling to maintain radial glial cells
    • Yoon, K. J. et al. Mind bomb 1 expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58, 519-531 (2008).
    • (2008) Neuron , vol.58 , pp. 519-531
    • Yoon, K.J.1
  • 57
    • 84859650020 scopus 로고    scopus 로고
    • Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia
    • Dong, Z., Yang, N., Yeo, S. Y., Chitnis, A. & Guo, S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 74, 65-78 (2012).
    • (2012) Neuron , vol.74 , pp. 65-78
    • Dong, Z.1    Yang, N.2    Yeo, S.Y.3    Chitnis, A.4    Guo, S.5
  • 58
    • 84877994081 scopus 로고    scopus 로고
    • Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: Potential role in Dll1 Notch signaling
    • Nelson, B. R., Hodge, R. D., Bedogni, F. & Hevner, R. F. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1 Notch signaling. J. Neurosci. 33, 9122-9139 (2013).
    • (2013) J. Neurosci. , vol.33 , pp. 9122-9139
    • Nelson, B.R.1    Hodge, R.D.2    Bedogni, F.3    Hevner, R.F.4
  • 59
    • 0035839458 scopus 로고    scopus 로고
    • Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain
    • Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467-30474 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 30467-30474
    • Ohtsuka, T.1    Sakamoto, M.2    Guillemot, F.3    Kageyama, R.4
  • 60
    • 34548825987 scopus 로고    scopus 로고
    • Differential Notch signalling distinguishes neural stem cells from intermediate progenitors
    • Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351-355 (2007).
    • (2007) Nature , vol.449 , pp. 351-355
    • Mizutani, K.1    Yoon, K.2    Dang, L.3    Tokunaga, A.4    Gaiano, N.5
  • 61
    • 41549140462 scopus 로고    scopus 로고
    • Oscillations in notch signaling regulate maintenance of neural progenitors
    • Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52-64 (2008).
    • (2008) Neuron , vol.58 , pp. 52-64
    • Shimojo, H.1    Ohtsuka, T.2    Kageyama, R.3
  • 62
    • 33746550363 scopus 로고    scopus 로고
    • And high levels of Hes1 expression regulate boundary formation in the developing central nervous system
    • Baek, J. H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T. & Kageyama, R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467-2476 (2006).
    • (2006) Development , vol.133 , pp. 2467-2476
    • Baek, J.H.1    Hatakeyama, J.2    Sakamoto, S.3    Ohtsuka, T.4    Persistent, K.R.5
  • 63
    • 22244492586 scopus 로고    scopus 로고
    • Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development
    • Calegari, F., Haubensak, W., Haffner, C. & Huttner, W. B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25, 6533-6538 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 6533-6538
    • Calegari, F.1    Haubensak, W.2    Haffner, C.3    Huttner, W.B.4
  • 64
    • 78651373493 scopus 로고    scopus 로고
    • Neural stem and progenitor cells shorten S phase on commitment to neuron production
    • Arai, Y. et al. Neural stem and progenitor cells shorten S phase on commitment to neuron production. Nat. Commun. 2, 154 (2011).
    • (2011) Nat. Commun. , vol.2 , pp. 154
    • Arai, Y.1
  • 65
    • 0348143168 scopus 로고    scopus 로고
    • An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis
    • Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 116, 4947-4955 (2003).
    • (2003) J. Cell Sci. , vol.116 , pp. 4947-4955
    • Calegari, F.1    Huttner, W.B.2
  • 66
    • 76049113552 scopus 로고    scopus 로고
    • Forced G1 phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex
    • Pilaz, L. J. et al. Forced G1 phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc. Natl Acad. Sci. USA 106, 21924-21929 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 21924-21929
    • Pilaz, L.J.1
  • 67
    • 69249213590 scopus 로고    scopus 로고
    • Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors
    • Lange, C., Huttner, W. B. & Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5, 320-331 (2009).
    • (2009) Cell Stem Cell , vol.5 , pp. 320-331
    • Lange, C.1    Huttner, W.B.2    Calegari, F.3
  • 68
    • 0029026103 scopus 로고
    • The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall
    • Takahashi, T., Nowakowski, R. S. & Caviness, V. S. J. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046-6057 (1995).
    • (1995) J. Neurosci. , vol.15 , pp. 6046-6057
    • Takahashi, T.1    Nowakowski, R.S.2    Caviness, V.S.J.3
  • 69
    • 84888090217 scopus 로고    scopus 로고
    • Temporal fate specification and neural progenitor competence during development
    • Kohwi, M. & Doe, C. Q. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823-838 (2013).
    • (2013) Nat. Rev. Neurosci. , vol.14 , pp. 823-838
    • Kohwi, M.1    Doe, C.Q.2
  • 70
    • 0031860687 scopus 로고    scopus 로고
    • Environmental control of the cell cycle in Drosophila: Nutrition activates mitotic and endoreplicative cells by distinct mechanisms
    • Britton, J. S. & Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125, 2149-2158 (1998).
    • (1998) Development , vol.125 , pp. 2149-2158
    • Britton, J.S.1    Edgar, B.A.2
  • 71
    • 84905708331 scopus 로고    scopus 로고
    • Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells
    • Speder, P. & Brand, A. H. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Dev. Cell. 30, 309-321 (2014).
    • (2014) Dev. Cell. , vol.30 , pp. 309-321
    • Speder, P.1    Brand, A.H.2
  • 72
    • 79953044605 scopus 로고    scopus 로고
    • Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila
    • Sousa-Nunes, R., Yee, L. L. & Gould, A. P. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471, 508-512 (2011).
    • (2011) Nature , vol.471 , pp. 508-512
    • Sousa-Nunes, R.1    Yee, L.L.2    Gould, A.P.3
  • 73
    • 78650503295 scopus 로고    scopus 로고
    • Nutrition-responsive glia control exit of neural stem cells from quiescence
    • Chell, J. M. & Brand, A. H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143, 1161-1173 (2010).
    • (2010) Cell , vol.143 , pp. 1161-1173
    • Chell, J.M.1    Brand, A.H.2
  • 74
    • 79956201338 scopus 로고    scopus 로고
    • Regulating the balance between symmetric and asymmetric stem cell division in the developing brain
    • Egger, B., Gold, K. S. & Brand, A. H. Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly 5, 237-241 (2011).
    • (2011) Fly , vol.5 , pp. 237-241
    • Egger, B.1    Gold, K.S.2    Brand, A.H.3
  • 75
    • 84908548552 scopus 로고    scopus 로고
    • Control of brain development and homeostasis by local and systemic insulin signalling
    • Liu, J., Speder, P. & Brand, A. H. Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes Obes. Metab. 16, S16-S20 (2014).
    • (2014) Diabetes Obes. Metab. , vol.16 , pp. S16-S20
    • Liu, J.1    Speder, P.2    Brand, A.H.3
  • 76
    • 79952215175 scopus 로고    scopus 로고
    • The cerebrospinal fluid provides a proliferative niche for neural progenitor cells
    • Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893-905 (2011).
    • (2011) Neuron , vol.69 , pp. 893-905
    • Lehtinen, M.K.1
  • 77
    • 2342511484 scopus 로고    scopus 로고
    • In vivo effects of insulin-like growth factor i (IGF I) on prenatal and early postnatal development of the central nervous system
    • Popken, G. J. et al. In vivo effects of insulin-like growth factor I (IGF I) on prenatal and early postnatal development of the central nervous system. Eur. J. Neurosci. 19, 2056-2068 (2004).
    • (2004) Eur. J. Neurosci. , vol.19 , pp. 2056-2068
    • Popken, G.J.1
  • 78
    • 0034307009 scopus 로고    scopus 로고
    • Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development
    • Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34-44 (2000).
    • (2000) Dev. Biol. , vol.226 , pp. 34-44
    • Brody, T.1    Odenwald, W.F.2
  • 79
    • 0035943453 scopus 로고    scopus 로고
    • Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny
    • Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511-521 (2001).
    • (2001) Cell , vol.106 , pp. 511-521
    • Isshiki, T.1    Pearson, B.2    Holbrook, S.3    Doe, C.Q.4
  • 80
    • 0031985053 scopus 로고    scopus 로고
    • Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS
    • Kambadur, R. et al. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev. 12, 246-260 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 246-260
    • Kambadur, R.1
  • 81
    • 0142136740 scopus 로고    scopus 로고
    • Regulation of neuroblast competence in Drosophila
    • Pearson, B. J. & Doe, C. Q. Regulation of neuroblast competence in Drosophila. Nature 425, 624-628 (2003).
    • (2003) Nature , vol.425 , pp. 624-628
    • Pearson, B.J.1    Doe, C.Q.2
  • 82
    • 33748683363 scopus 로고    scopus 로고
    • Pdm and Castor specify late-born motor neuron identity in the NEUROBLAST7 1 lineage
    • Grosskortenhaus, R., Robinson, K. J. & Doe, C. Q. Pdm and Castor specify late-born motor neuron identity in the NEUROBLAST7 1 lineage. Genes Dev. 20, 2618-2627 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 2618-2627
    • Grosskortenhaus, R.1    Robinson, K.J.2    Doe, C.Q.3
  • 83
    • 43949139294 scopus 로고    scopus 로고
    • Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila
    • Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133, 891-902 (2008).
    • (2008) Cell , vol.133 , pp. 891-902
    • Maurange, C.1    Cheng, L.2    Gould, A.P.3
  • 84
    • 84874713564 scopus 로고    scopus 로고
    • Hedgehog signaling acts with the temporal cascade to promote neuroblast cell cycle exit
    • Chai, P. C., Liu, Z., Chia, W. & Cai, Y. Hedgehog signaling acts with the temporal cascade to promote neuroblast cell cycle exit. PLoS Biol. 11, e1001494 (2013).
    • (2013) PLoS Biol. , vol.11 , pp. e1001494
    • Chai, P.C.1    Liu, Z.2    Chia, W.3    Cai, Y.4
  • 85
    • 84908432541 scopus 로고    scopus 로고
    • Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells
    • Homem, C. C. et al. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 158, 874-888 (2014).
    • (2014) Cell , vol.158 , pp. 874-888
    • Homem, C.C.1
  • 86
    • 77950628336 scopus 로고    scopus 로고
    • Inactivation of both foxo and reaper promotes long-Term adult neurogenesis in Drosophila
    • Siegrist, S. E., Haque, N. S., Chen, C. H., Hay, B. A. & Hariharan, I. K. Inactivation of both foxo and reaper promotes long-Term adult neurogenesis in Drosophila. Curr. Biol. 20, 643-648 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 643-648
    • Siegrist, S.E.1    Haque, N.S.2    Chen, C.H.3    Hay, B.A.4    Hariharan, I.K.5
  • 87
    • 0028200532 scopus 로고
    • Genetic control of programmed cell death in Drosophila
    • White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 667-683 (1994).
    • (1994) Science , vol.264 , pp. 667-683
    • White, K.1
  • 88
    • 0037461751 scopus 로고    scopus 로고
    • A pulse of the Drosophila Hox protein Abdominal A schedules the end of neural proliferation via neuroblast apoptosis
    • Bello, B. C., Hirth, F. & Gould, A. P. A pulse of the Drosophila Hox protein Abdominal A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37, 209-219 (2003).
    • (2003) Neuron , vol.37 , pp. 209-219
    • Bello, B.C.1    Hirth, F.2    Gould, A.P.3
  • 89
    • 84935727513 scopus 로고    scopus 로고
    • Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner
    • Arya, R., Sarkissian, T., Tan, Y. & White, K. Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner. Cell Death Differ. 22, 1378-1387 (2015).
    • (2015) Cell Death Differ. , vol.22 , pp. 1378-1387
    • Arya, R.1    Sarkissian, T.2    Tan, Y.3    White, K.4
  • 90
    • 26244435495 scopus 로고    scopus 로고
    • Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts
    • Cenci, C. & Gould, A. P. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development 132, 3835-3845 (2005).
    • (2005) Development , vol.132 , pp. 3835-3845
    • Cenci, C.1    Gould, A.P.2
  • 91
    • 84879689781 scopus 로고    scopus 로고
    • Combinatorial temporal patterning in progenitors expands neural diversity
    • Bayraktar, O. A. & Doe, C. Q. Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498, 449-455 (2013).
    • (2013) Nature , vol.498 , pp. 449-455
    • Bayraktar, O.A.1    Doe, C.Q.2
  • 92
    • 83455259343 scopus 로고    scopus 로고
    • PRDM proteins: Important players in differentiation and disease
    • Fog, C. K., Galli, G. G. & Lund, A. H. PRDM proteins: important players in differentiation and disease. Bioessays 34, 50-60 (2012).
    • (2012) Bioessays , vol.34 , pp. 50-60
    • Fog, C.K.1    Galli, G.G.2    Lund, A.H.3
  • 93
    • 84865680532 scopus 로고    scopus 로고
    • Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity
    • Pinheiro, I. et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150, 948-960 (2012).
    • (2012) Cell , vol.150 , pp. 948-960
    • Pinheiro, I.1
  • 94
    • 84881526352 scopus 로고    scopus 로고
    • A temporal mechanism that produces neuronal diversity in the Drosophila visual center
    • Suzuki, T., Kaido, M., Takayama, R. & Sato, M. A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev. Biol. 380, 12-24 (2013).
    • (2013) Dev. Biol. , vol.380 , pp. 12-24
    • Suzuki, T.1    Kaido, M.2    Takayama, R.3    Sato, M.4
  • 95
    • 84879692240 scopus 로고    scopus 로고
    • Temporal patterning of Drosophila medulla neuroblasts controls neural fates
    • Li, X. et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498, 456-462 (2013).
    • (2013) Nature , vol.498 , pp. 456-462
    • Li, X.1
  • 96
    • 0030200120 scopus 로고    scopus 로고
    • Restriction of late cerebral cortical progenitors to an upper-layer fate
    • Frantz, G. D. & McConnell, S. K. Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17, 55-61 (1996).
    • (1996) Neuron , vol.17 , pp. 55-61
    • Frantz, G.D.1    McConnell, S.K.2
  • 97
    • 0033932628 scopus 로고    scopus 로고
    • Progressive restriction in fate potential by neural progenitors during cerebral cortical development
    • Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863-2872 (2000).
    • (2000) Development , vol.127 , pp. 2863-2872
    • Desai, A.R.1    McConnell, S.K.2
  • 98
    • 52149102948 scopus 로고    scopus 로고
    • An intrinsic mechanism of corticogenesis from embryonic stem cells
    • Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351-357 (2008).
    • (2008) Nature , vol.455 , pp. 351-357
    • Gaspard, N.1
  • 99
    • 33745726874 scopus 로고    scopus 로고
    • The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells
    • Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743-751 (2006).
    • (2006) Nat. Neurosci. , vol.9 , pp. 743-751
    • Shen, Q.1
  • 100
    • 54949102049 scopus 로고    scopus 로고
    • Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals
    • Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519-532 (2008).
    • (2008) Cell Stem Cell , vol.3 , pp. 519-532
    • Eiraku, M.1
  • 101
    • 84864861869 scopus 로고    scopus 로고
    • Fate-restricted neural progenitors in the mammalian cerebral cortex
    • Franco, S. J. et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337, 746-749 (2012).
    • (2012) Science , vol.337 , pp. 746-749
    • Franco, S.J.1
  • 102
    • 84888857161 scopus 로고    scopus 로고
    • Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes
    • Guo, C. et al. Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 80, 1167-1174 (2013).
    • (2013) Neuron , vol.80 , pp. 1167-1174
    • Guo, C.1
  • 103
    • 0032215091 scopus 로고    scopus 로고
    • Pax6 controls radial glia differentiation in the cerebral cortex
    • Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031-1044 (1998).
    • (1998) Neuron , vol.21 , pp. 1031-1044
    • Götz, M.1    Stoykova, A.2    Gruss, P.3
  • 104
    • 0029808275 scopus 로고    scopus 로고
    • Primary structure, neural-specific expression, and chromosomal localization of Cux 2, a second murine homeobox gene related to Drosophila cut
    • Quaggin, S. E., Heuvel, G. B., Golden, K., Bodmer, R. & Igarashi, P. Primary structure, neural-specific expression, and chromosomal localization of Cux 2, a second murine homeobox gene related to Drosophila cut. J. Biol. Chem. 271, 22624-22634 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 22624-22634
    • Quaggin, S.E.1    Heuvel, G.B.2    Golden, K.3    Bodmer, R.4    Igarashi, P.5
  • 105
    • 50249103813 scopus 로고    scopus 로고
    • Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development
    • Naka, H., Nakamura, S., Shimazaki, T. & Okano, H. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat. Neurosci. 11, 1014-1023 (2008).
    • (2008) Nat. Neurosci. , vol.11 , pp. 1014-1023
    • Naka, H.1    Nakamura, S.2    Shimazaki, T.3    Okano, H.4
  • 107
    • 84922021700 scopus 로고    scopus 로고
    • A conserved regulatory logic controls temporal identity in mouse neural progenitors
    • Mattar, P., Ericson, J., Blackshaw, S. & Cayouette, M. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron 85, 497-504 (2015).
    • (2015) Neuron , vol.85 , pp. 497-504
    • Mattar, P.1    Ericson, J.2    Blackshaw, S.3    Cayouette, M.4
  • 108
    • 0025350883 scopus 로고
    • Cortical radial glia: Identification in tissue culture and evidence for their transformation to astrocytes
    • Culican, S. M., Baumrind, N. L., Yamamoto, M. & Pearlman, A. L. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J. Neurosci. 10, 684-692 (1990).
    • (1990) J. Neurosci. , vol.10 , pp. 684-692
    • Culican, S.M.1    Baumrind, N.L.2    Yamamoto, M.3    Pearlman, A.L.4
  • 109
    • 78149462716 scopus 로고    scopus 로고
    • Developmental genetics of vertebrate glial-cell specification
    • Rowitch, D. H. & Kriegstein, A. R. Developmental genetics of vertebrate glial-cell specification. Nature 468, 214-222 (2010).
    • (2010) Nature , vol.468 , pp. 214-222
    • Rowitch, D.H.1    Kriegstein, A.R.2
  • 110
    • 24344472335 scopus 로고    scopus 로고
    • DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling
    • Fan, G. et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132, 3345-3356 (2005).
    • (2005) Development , vol.132 , pp. 3345-3356
    • Fan, G.1
  • 111
    • 0035090226 scopus 로고    scopus 로고
    • Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors
    • Chambers, C. B. et al. Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 128, 689-702 (2001).
    • (2001) Development , vol.128 , pp. 689-702
    • Chambers, C.B.1
  • 112
    • 59649112849 scopus 로고    scopus 로고
    • Committed neuronal precursors confer astrocytic potential on residual neural precursor cells
    • Namihira, M. et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell 16, 245-255 (2009).
    • (2009) Dev. Cell , vol.16 , pp. 245-255
    • Namihira, M.1
  • 113
    • 69949085080 scopus 로고    scopus 로고
    • Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition
    • Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600-613 (2009).
    • (2009) Neuron , vol.63 , pp. 600-613
    • Hirabayashi, Y.1
  • 114
    • 26944448206 scopus 로고    scopus 로고
    • Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin 1
    • Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin 1. Neuron 48, 253-265 (2005).
    • (2005) Neuron , vol.48 , pp. 253-265
    • Barnabe-Heider, F.1
  • 115
    • 84892550276 scopus 로고    scopus 로고
    • Long-Term live cell imaging and automated 4D analysis of neuroblast lineages
    • Homem, C. C., Reichardt, I., Berger, C., Lendl, T. & Knoblich, J. A. Long-Term live cell imaging and automated 4D analysis of neuroblast lineages. PLoS ONE 8, e79588 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e79588
    • Homem, C.C.1    Reichardt, I.2    Berger, C.3    Lendl, T.4    Knoblich, J.A.5
  • 116
    • 0023876550 scopus 로고
    • Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster
    • Truman, J. W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125, 145-157 (1988).
    • (1988) Dev. Biol. , vol.125 , pp. 145-157
    • Truman, J.W.1    Bate, M.2
  • 117
    • 53249094103 scopus 로고    scopus 로고
    • The TOR pathway couples nutrition and developmental timing in Drosophila
    • Layalle, S., Arquier, N. & Leopold, P. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell 15, 568-577 (2008).
    • (2008) Dev. Cell , vol.15 , pp. 568-577
    • Layalle, S.1    Arquier, N.2    Leopold, P.3
  • 118
    • 84860491077 scopus 로고    scopus 로고
    • Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing
    • Colombani, J., Andersen, D. S. & Leopold, P. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336, 582-585 (2012).
    • (2012) Science , vol.336 , pp. 582-585
    • Colombani, J.1    Andersen, D.S.2    Leopold, P.3
  • 119
    • 84860487216 scopus 로고    scopus 로고
    • Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation
    • Garelli, A., Gontijo, A. M., Miguela, V., Caparros, E. & Dominguez, M. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336, 579-582 (2012).
    • (2012) Science , vol.336 , pp. 579-582
    • Garelli, A.1    Gontijo, A.M.2    Miguela, V.3    Caparros, E.4    Dominguez, M.5
  • 120
    • 0038275335 scopus 로고
    • Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts
    • Frerman, F. E. & Goodman, S. I. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc. Natl Acad. Sci. USA 82, 4517-4520 (1985).
    • (1985) Proc. Natl Acad. Sci. USA , vol.82 , pp. 4517-4520
    • Frerman, F.E.1    Goodman, S.I.2
  • 121
    • 84872169944 scopus 로고    scopus 로고
    • Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis
    • Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226-230 (2013).
    • (2013) Nature , vol.493 , pp. 226-230
    • Knobloch, M.1
  • 122
    • 84870715883 scopus 로고    scopus 로고
    • Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome
    • McIntyre, R. E. et al. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet. 8, e1003022 (2012).
    • (2012) PLoS Genet. , vol.8 , pp. e1003022
    • McIntyre, R.E.1
  • 123
    • 84927581261 scopus 로고    scopus 로고
    • Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy
    • Martin, C. A. et al. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat. Genet. 46, 1283-1292 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 1283-1292
    • Martin, C.A.1
  • 124
    • 77952681049 scopus 로고    scopus 로고
    • Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex
    • Buchman, J. J. et al. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66, 386-402 (2010).
    • (2010) Neuron , vol.66 , pp. 386-402
    • Buchman, J.J.1
  • 125
    • 77955962579 scopus 로고    scopus 로고
    • CDK5RAP2 regulates centriole engagement and cohesion in mice
    • Barrera, J. A. et al. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell 18, 913-926 (2010).
    • (2010) Dev. Cell , vol.18 , pp. 913-926
    • Barrera, J.A.1
  • 126
    • 33745883798 scopus 로고    scopus 로고
    • Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells
    • Fish, J. L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl Acad. Sci. USA 103, 10438-10443 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 10438-10443
    • Fish, J.L.1    Kosodo, Y.2    Enard, W.3    Paabo, S.4    Huttner, W.B.5
  • 127
    • 84887217839 scopus 로고    scopus 로고
    • The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II
    • Rujano, M. A., Sanchez-Pulido, L., Pennetier, C., le Dez, G. & Basto, R. The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat. Cell Biol. 15, 1294-1306 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1294-1306
    • Rujano, M.A.1    Sanchez-Pulido, L.2    Pennetier, C.3    Le Dez, G.4    Basto, R.5
  • 128
    • 80053021310 scopus 로고    scopus 로고
    • ASPM regulates Wnt signaling pathway activity in the developing brain
    • Buchman, J. J., Durak, O. & Tsai, L. H. ASPM regulates Wnt signaling pathway activity in the developing brain. Genes Dev. 25, 1909-1914 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1909-1914
    • Buchman, J.J.1    Durak, O.2    Tsai, L.H.3
  • 129
    • 84901765986 scopus 로고    scopus 로고
    • Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size
    • Chen, J. F. et al. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat. Commun. 5, 3885 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3885
    • Chen, J.F.1
  • 130
    • 80455177095 scopus 로고    scopus 로고
    • MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway
    • Gruber, R. et al. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat. Cell Biol. 13, 1325-1334 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1325-1334
    • Gruber, R.1
  • 131
    • 35348889541 scopus 로고    scopus 로고
    • Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila
    • Varmark, H. et al. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr. Biol. 17, 1735-1745 (2007).
    • (2007) Curr. Biol. , vol.17 , pp. 1735-1745
    • Varmark, H.1
  • 132
    • 77957982182 scopus 로고    scopus 로고
    • Asterless is a scaffold for the onset of centriole assembly
    • Dzhindzhev, N. S. et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714-718 (2010).
    • (2010) Nature , vol.467 , pp. 714-718
    • Dzhindzhev, N.S.1
  • 133
    • 0035032565 scopus 로고    scopus 로고
    • The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts
    • Giansanti, M. G., Gatti, M. & Bonaccorsi, S. The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development 128, 1137-1145 (2001).
    • (2001) Development , vol.128 , pp. 1137-1145
    • Giansanti, M.G.1    Gatti, M.2    Bonaccorsi, S.3
  • 134
    • 84886286155 scopus 로고    scopus 로고
    • Genetic causes of microcephaly and lessons for neuronal development
    • Wiley Interdiscip
    • Gilmore, E. C. & Walsh, C. A. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip. Rev. Dev. Biol. 2, 461-478 (2013).
    • (2013) Rev. Dev. Biol. , vol.2 , pp. 461-478
    • Gilmore, E.C.1    Walsh, C.A.2
  • 135
    • 0034518641 scopus 로고    scopus 로고
    • Isolation of radial glial cells by fluorescent-Activated cell sorting reveals a neuronal lineage
    • Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-Activated cell sorting reveals a neuronal lineage. Development 127, 5253-5263 (2000).
    • (2000) Development , vol.127 , pp. 5253-5263
    • Malatesta, P.1    Hartfuss, E.2    Gotz, M.3
  • 136
    • 5144222593 scopus 로고    scopus 로고
    • Mitotic spindle regulation by Nde1 controls cerebral cortical size
    • Feng, Y. & Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44, 279-293 (2004).
    • (2004) Neuron , vol.44 , pp. 279-293
    • Feng, Y.1    Walsh, C.A.2
  • 137
    • 84884414984 scopus 로고    scopus 로고
    • Cerebral organoids model human brain development and microcephaly
    • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379 (2013).
    • (2013) Nature , vol.501 , pp. 373-379
    • Lancaster, M.A.1
  • 138
    • 0035824396 scopus 로고    scopus 로고
    • Negative regulation of neural stem/ progenitor cell proliferation by the PTEN tumor suppressor gene in vivo
    • Groszer, M. et al. Negative regulation of neural stem/ progenitor cell proliferation by the PTEN tumor suppressor gene in vivo. Science 294, 2186-2189 (2001).
    • (2001) Science , vol.294 , pp. 2186-2189
    • Groszer, M.1
  • 139
    • 84925674581 scopus 로고    scopus 로고
    • Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia
    • D'Gama, A. M. et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann. Neurol. 77, 720-725 (2015).
    • (2015) Ann. Neurol. , vol.77 , pp. 720-725
    • D'Gama, A.M.1
  • 140
    • 84859646140 scopus 로고    scopus 로고
    • Somatic activation of AKT3 causes hemispheric developmental brain malformations
    • Poduri, A. et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41-48 (2012).
    • (2012) Neuron , vol.74 , pp. 41-48
    • Poduri, A.1
  • 141
    • 84902547567 scopus 로고    scopus 로고
    • Megalencephaly and hemimegalencephaly: Breakthroughs in molecular etiology
    • Mirzaa, G. M. & Poduri, A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am. J. Med. Genet. C. Semin. Med. Genet. 166, 156-172 (2014).
    • (2014) Am. J. Med. Genet. C. Semin. Med. Genet. , vol.166 , pp. 156-172
    • Mirzaa, G.M.1    Poduri, A.2
  • 142
    • 0031203265 scopus 로고    scopus 로고
    • Germline mutations in PTEN are present in Bannayan-Zonana syndrome
    • Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat. Genet. 16, 333-334 (1997).
    • (1997) Nat. Genet. , vol.16 , pp. 333-334
    • Marsh, D.J.1
  • 143
    • 84899650142 scopus 로고    scopus 로고
    • De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome
    • Mirzaa, G. M. et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat. Genet. 46, 510-515 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 510-515
    • Mirzaa, G.M.1
  • 145
    • 84899480136 scopus 로고    scopus 로고
    • Coffin-Siris syndrome is a SWI/ SNF complex disorder
    • Tsurusaki, Y. et al. Coffin-Siris syndrome is a SWI/ SNF complex disorder. Clin. Genet. 85, 548-554 (2014).
    • (2014) Clin. Genet. , vol.85 , pp. 548-554
    • Tsurusaki, Y.1
  • 146
    • 77952867780 scopus 로고    scopus 로고
    • OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling
    • Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690-699 (2010).
    • (2010) Nat. Neurosci. , vol.13 , pp. 690-699
    • Fietz, S.A.1
  • 148
    • 84890282623 scopus 로고    scopus 로고
    • Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
    • Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284-20289 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 20284-20289
    • Kadoshima, T.1
  • 149
    • 0036133288 scopus 로고    scopus 로고
    • Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
    • Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37-53 (2002).
    • (2002) Cereb. Cortex , vol.12 , pp. 37-53
    • Smart, I.H.1    Dehay, C.2    Giroud, P.3    Berland, M.4    Kennedy, H.5
  • 150
    • 79955455586 scopus 로고    scopus 로고
    • A new subtype of progenitor cell in the mouse embryonic neocortex
    • Wang, X., Tsai, J. W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555-561 (2011).
    • (2011) Nat. Neurosci. , vol.14 , pp. 555-561
    • Wang, X.1    Tsai, J.W.2    LaMonica, B.3    Kriegstein, A.R.4
  • 151
    • 79959924122 scopus 로고    scopus 로고
    • Development and evolution of the human neocortex
    • Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18-36 (2011).
    • (2011) Cell , vol.146 , pp. 18-36
    • Lui, J.H.1    Hansen, D.V.2    Kriegstein, A.R.3
  • 152
    • 84919856369 scopus 로고    scopus 로고
    • Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex
    • Lui, J. H. et al. Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex. Nature 515, 264-268 (2014).
    • (2014) Nature , vol.515 , pp. 264-268
    • Lui, J.H.1
  • 153
    • 73349138892 scopus 로고    scopus 로고
    • Regulation of tissue growth through nutrient sensing
    • Hietakangas, V. & Cohen, S. M. Regulation of tissue growth through nutrient sensing. Annu. Rev. Genet. 43, 389-410 (2009).
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 389-410
    • Hietakangas, V.1    Cohen, S.M.2
  • 154
    • 0000604703 scopus 로고
    • Chronic fetal distress and placental insufficiency
    • Gruenwald, P. Chronic fetal distress and placental insufficiency. Biol. Neonat. 5, 215-265 (1963).
    • (1963) Biol. Neonat. , vol.5 , pp. 215-265
    • Gruenwald, P.1
  • 155
    • 79961135597 scopus 로고    scopus 로고
    • Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila
    • Cheng, L. Y. et al. Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell 146, 435-447 (2011).
    • (2011) Cell , vol.146 , pp. 435-447
    • Cheng, L.Y.1
  • 156
    • 0034933673 scopus 로고    scopus 로고
    • Identification and characterization of DAlk: A novel Drosophila melanogaster RTK which drives ERK activation in vivo
    • Loren, C. E. et al. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells 6, 531-544 (2001).
    • (2001) Genes Cells , vol.6 , pp. 531-544
    • Loren, C.E.1
  • 157
    • 0036302105 scopus 로고    scopus 로고
    • Identification of microcephalin, a protein implicated in determining the size of the human brain
    • Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 71, 136-142 (2002).
    • (2002) Am. J. Hum. Genet. , vol.71 , pp. 136-142
    • Jackson, A.P.1
  • 158
    • 0037821661 scopus 로고    scopus 로고
    • Multiple tumor suppressor pathways negatively regulate telomerase
    • Lin, S. Y. & Elledge, S. J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113, 881-889 (2003).
    • (2003) Cell , vol.113 , pp. 881-889
    • Lin, S.Y.1    Elledge, S.J.2
  • 159
    • 36248986591 scopus 로고    scopus 로고
    • Microcephalin coordinates mitosis in the syncytial Drosophila embryo
    • Brunk, K. et al. Microcephalin coordinates mitosis in the syncytial Drosophila embryo. J. Cell Sci. 120, 3578-3588 (2007).
    • (2007) J. Cell Sci. , vol.120 , pp. 3578-3588
    • Brunk, K.1
  • 160
    • 36248952558 scopus 로고    scopus 로고
    • The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo
    • Rickmyre, J. L. et al. The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo. J. Cell Sci. 120, 3565-3577 (2007).
    • (2007) J. Cell Sci. , vol.120 , pp. 3565-3577
    • Rickmyre, J.L.1
  • 161
    • 78049336905 scopus 로고    scopus 로고
    • Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations
    • Bilguvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207-210 (2010).
    • (2010) Nature , vol.467 , pp. 207-210
    • Bilguvar, K.1
  • 162
    • 78049336070 scopus 로고    scopus 로고
    • WDR62 is associated with the spindle pole and is mutated in human microcephaly
    • Nicholas, A. K. et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat. Genet. 42, 1010-1014 (2010).
    • (2010) Nat. Genet. , vol.42 , pp. 1010-1014
    • Nicholas, A.K.1
  • 163
    • 78049332008 scopus 로고    scopus 로고
    • Mutations in WDR62, encoding a centrosome-Associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture
    • Yu, T. W. et al. Mutations in WDR62, encoding a centrosome-Associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet. 42, 1015-1020 (2010).
    • (2010) Nat. Genet. , vol.42 , pp. 1015-1020
    • Yu, T.W.1
  • 164
    • 20144386602 scopus 로고    scopus 로고
    • A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size
    • Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 37, 353-355 (2005).
    • (2005) Nat. Genet. , vol.37 , pp. 353-355
    • Bond, J.1
  • 165
    • 77955068270 scopus 로고    scopus 로고
    • Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4
    • Guernsey, D. L. et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 87, 40-51 (2010).
    • (2010) Am. J. Hum. Genet. , vol.87 , pp. 40-51
    • Guernsey, D.L.1
  • 166
    • 0036787796 scopus 로고    scopus 로고
    • ASPM is a major determinant of cerebral cortical size
    • Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nat. Genet. 32, 316-320 (2002).
    • (2002) Nat. Genet. , vol.32 , pp. 316-320
    • Bond, J.1
  • 167
    • 62649118818 scopus 로고    scopus 로고
    • Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly
    • Kumar, A., Girimaji, S. C., Duvvari, M. R. & Blanton, S. H. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am. J. Hum. Genet. 84, 286-290 (2009).
    • (2009) Am. J. Hum. Genet. , vol.84 , pp. 286-290
    • Kumar, A.1    Girimaji, S.C.2    Duvvari, M.R.3    Blanton, S.H.4
  • 168
  • 169
    • 84860757548 scopus 로고    scopus 로고
    • A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function
    • Hussain, M. S. et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am. J. Hum. Genet. 90, 871-878 (2012).
    • (2012) Am. J. Hum. Genet. , vol.90 , pp. 871-878
    • Hussain, M.S.1
  • 170
    • 84876416327 scopus 로고    scopus 로고
    • Human microcephaly protein CEP135 binds to hSAS 6 and CPAP, and is required for centriole assembly
    • Lin, Y. C. et al. Human microcephaly protein CEP135 binds to hSAS 6 and CPAP, and is required for centriole assembly. EMBO J. 32, 1141-1154 (2013).
    • (2013) EMBO J. , vol.32 , pp. 1141-1154
    • Lin, Y.C.1
  • 171
    • 80054978334 scopus 로고    scopus 로고
    • A primary microcephaly protein complex forms a ring around parental centrioles
    • Sir, J. H. et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat. Genet. 43, 1147-1153 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 1147-1153
    • Sir, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.