메뉴 건너뛰기




Volumn 16, Issue 11, 2015, Pages 643-649

Targeting Polycomb systems to regulate gene expression: Modifications to a complex story

Author keywords

[No Author keywords available]

Indexed keywords

BMI1 PROTEIN; POLYCOMB GROUP PROTEIN; POLYCOMB REPRESSIVE COMPLEX 2; TRANSCRIPTION FACTOR; UNTRANSLATED RNA; CELL CYCLE PROTEIN; CHROMATIN; DNA BINDING PROTEIN; HISTONE; PRC1 PROTEIN, HUMAN; RNA BINDING PROTEIN;

EID: 84945452552     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm4067     Document Type: Article
Times cited : (279)

References (75)
  • 1
    • 0018240421 scopus 로고
    • A gene complex controlling segmentation in Drosophila
    • Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565-570 (1978).
    • (1978) Nature , vol.276 , pp. 565-570
    • Lewis, E.B.1
  • 2
    • 84928535677 scopus 로고    scopus 로고
    • The controversial role of the Polycomb group proteins in transcription and cancer: How much do we not understand Polycomb proteins?
    • Scelfo, A., Piunti, A. & Pasini, D. The controversial role of the Polycomb group proteins in transcription and cancer: how much do we not understand Polycomb proteins? FEBS J. 282, 1703-1722 (2015).
    • (2015) FEBS J. , vol.282 , pp. 1703-1722
    • Scelfo, A.1    Piunti, A.2    Pasini, D.3
  • 3
    • 84876871047 scopus 로고    scopus 로고
    • Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put
    • Simon, J. A. & Kingston, R. E. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49, 808-824 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 808-824
    • Simon, J.A.1    Kingston, R.E.2
  • 4
    • 84899482505 scopus 로고    scopus 로고
    • What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory
    • Steffen, P. A. & Ringrose, L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat. Rev. Mol. Cell Biol. 15, 340-356 (2014).
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 340-356
    • Steffen, P.A.1    Ringrose, L.2
  • 5
    • 84888001513 scopus 로고    scopus 로고
    • A new world of Polycombs: Unexpected partnerships and emerging functions
    • Schwartz, Y. B. & Pirrotta, V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat. Rev. Genet. 14, 853-864 (2013).
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 853-864
    • Schwartz, Y.B.1    Pirrotta, V.2
  • 6
    • 84885393469 scopus 로고    scopus 로고
    • Transcriptional regulation by Polycomb group proteins
    • Di Croce, L. & Helin, K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20, 1147-1155 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1147-1155
    • Di Croce, L.1    Helin, K.2
  • 7
  • 8
    • 84863011309 scopus 로고    scopus 로고
    • PCGF homologs CBX proteins and RYBP define functionally distinct PRC1 family complexes
    • Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344-356 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 344-356
    • Gao, Z.1
  • 10
    • 47949125993 scopus 로고    scopus 로고
    • Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor
    • Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 28, 4772-4781 (2008).
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4772-4781
    • Herranz, N.1
  • 11
    • 84859260959 scopus 로고    scopus 로고
    • REST-mediated recruitment of Polycomb repressor complexes in mammalian cells
    • Dietrich, N. et al. REST-mediated recruitment of Polycomb repressor complexes in mammalian cells. PLoS Genet. 8, e1002494 (2012).
    • (2012) PLoS Genet. , vol.8 , pp. e1002494
    • Dietrich, N.1
  • 12
    • 84871984418 scopus 로고    scopus 로고
    • Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting
    • Arnold, P. et al. Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res. 23, 60-73 (2013).
    • (2013) Genome Res. , vol.23 , pp. 60-73
    • Arnold, P.1
  • 13
    • 79956157987 scopus 로고    scopus 로고
    • REST interacts with Cbx proteins and regulates Polycomb repressive complex 1 occupancy at RE1 elements
    • Ren, X. & Kerppola, T. K. REST interacts with Cbx proteins and regulates Polycomb repressive complex 1 occupancy at RE1 elements. Mol. Cell. Biol. 31, 2100-2110 (2011).
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2100-2110
    • Ren, X.1    Kerppola, T.K.2
  • 14
    • 84863012512 scopus 로고    scopus 로고
    • Direct recruitment of Polycomb repressive complex 1 to chromatin by core binding transcription factors
    • Yu, M. et al. Direct recruitment of Polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol. Cell 45, 330-343 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 330-343
    • Yu, M.1
  • 15
    • 84930432382 scopus 로고    scopus 로고
    • Functional proteomic analysis of repressive histone methyltransferase complexes PRC2 and G9A reveals ZNF518B as a G9A regulator
    • Maier, V. K. et al. Functional proteomic analysis of repressive histone methyltransferase complexes PRC2 and G9A reveals ZNF518B as a G9A regulator. Mol. Cell. Proteomics 14, 1435-1446 (2015).
    • (2015) Mol. Cell. Proteomics , vol.14 , pp. 1435-1446
    • Maier, V.K.1
  • 16
    • 84875418596 scopus 로고    scopus 로고
    • Noncoding RNA and Polycomb recruitment
    • Brockdorff, N. Noncoding RNA and Polycomb recruitment. RNA 19, 429-442 (2013).
    • (2013) RNA , vol.19 , pp. 429-442
    • Brockdorff, N.1
  • 17
    • 19344375746 scopus 로고    scopus 로고
    • A chromosomal memory triggered by Xist regulates histone methylation in X inactivation
    • Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2, E171 (2004).
    • (2004) PLoS Biol. , vol.2 , pp. E171
    • Kohlmaier, A.1
  • 18
    • 0037387711 scopus 로고    scopus 로고
    • Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 Polycomb group complexes
    • Silva, J. et al. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 Polycomb group complexes. Dev. Cell 4, 481-495 (2003).
    • (2003) Dev. Cell , vol.4 , pp. 481-495
    • Silva, J.1
  • 19
    • 0242668706 scopus 로고    scopus 로고
    • Role of histone H3 lysine 27 methylation in X inactivation
    • Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131-135 (2003).
    • (2003) Science , vol.300 , pp. 131-135
    • Plath, K.1
  • 20
    • 0942268864 scopus 로고    scopus 로고
    • Epigenetic dynamics of imprinted X inactivation during early mouse development
    • Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644-649 (2004).
    • (2004) Science , vol.303 , pp. 644-649
    • Okamoto, I.1    Otte, A.P.2    Allis, C.D.3    Reinberg, D.4    Heard, E.5
  • 21
    • 84892866184 scopus 로고    scopus 로고
    • Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome
    • da Rocha, S. T. et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53, 301-316 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 301-316
    • Da Rocha, S.T.1
  • 22
    • 84910088832 scopus 로고    scopus 로고
    • ATRX directs binding of PRC2 to Xist RNA and Polycomb targets
    • Sarma, K. et al. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 159, 869-883 (2014).
    • (2014) Cell , vol.159 , pp. 869-883
    • Sarma, K.1
  • 23
    • 84893857700 scopus 로고    scopus 로고
    • Spatial separation of Xist RNA and Polycomb proteins revealed by superresolution microscopy
    • Cerase, A. et al. Spatial separation of Xist RNA and Polycomb proteins revealed by superresolution microscopy. Proc. Natl Acad. Sci. USA 111, 2235-2240 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 2235-2240
    • Cerase, A.1
  • 24
    • 84929325401 scopus 로고    scopus 로고
    • The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3
    • McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232-236 (2015).
    • (2015) Nature , vol.521 , pp. 232-236
    • McHugh, C.A.1
  • 25
    • 54049138948 scopus 로고    scopus 로고
    • Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation
    • Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232-246 (2008).
    • (2008) Mol. Cell , vol.32 , pp. 232-246
    • Pandey, R.R.1
  • 26
    • 34250729138 scopus 로고    scopus 로고
    • Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
    • Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311-1323 (2007).
    • (2007) Cell , vol.129 , pp. 1311-1323
    • Rinn, J.L.1
  • 27
    • 79956330964 scopus 로고    scopus 로고
    • CpG islands and the regulation of transcription
    • Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010-1022 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1010-1022
    • Deaton, A.M.1    Bird, A.2
  • 28
    • 79951500297 scopus 로고    scopus 로고
    • CpG island chromatin: A platform for gene regulation
    • Blackledge, N. P. & Klose, R. CpG island chromatin: a platform for gene regulation. Epigenetics 6, 147-152 (2011).
    • (2011) Epigenetics , vol.6 , pp. 147-152
    • Blackledge, N.P.1    Klose, R.2
  • 29
    • 78650684739 scopus 로고    scopus 로고
    • GC-rich sequence elements recruit PRC2 in mammalian ES cells
    • Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).
    • (2010) PLoS Genet. , vol.6 , pp. e1001244
    • Mendenhall, E.M.1
  • 30
    • 84878988149 scopus 로고    scopus 로고
    • KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands
    • Farcas, A. M. et al. KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).
    • (2012) ELife , vol.1 , pp. e00205
    • Farcas, A.M.1
  • 31
    • 84876497474 scopus 로고    scopus 로고
    • Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes
    • He, J. et al. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15, 373-384 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 373-384
    • He, J.1
  • 32
    • 84875799835 scopus 로고    scopus 로고
    • Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation
    • Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell (2013).
    • (2013) Mol. Cell
    • Wu, X.1    Johansen, J.V.2    Helin, K.3
  • 33
    • 84929131103 scopus 로고    scopus 로고
    • FBXL10 protects Polycomb-bound genes from hypermethylation
    • Boulard, M., Edwards, J. R. & Bestor, T. H. FBXL10 protects Polycomb-bound genes from hypermethylation. Nat. Genet. 47, 479-485 (2015).
    • (2015) Nat. Genet. , vol.47 , pp. 479-485
    • Boulard, M.1    Edwards, J.R.2    Bestor, T.H.3
  • 34
    • 76749083433 scopus 로고    scopus 로고
    • Jarid2 and PRC2, partners in regulating gene expression
    • Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368-380 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 368-380
    • Li, G.1
  • 35
    • 84924919291 scopus 로고    scopus 로고
    • Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA
    • Davidovich, C. et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552-558 (2015).
    • (2015) Mol. Cell , vol.57 , pp. 552-558
    • Davidovich, C.1
  • 37
    • 77953107585 scopus 로고    scopus 로고
    • Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb repressive complex-2
    • Kanhere, A. et al. Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb repressive complex-2. Mol. Cell 38, 675-688 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 675-688
    • Kanhere, A.1
  • 38
    • 84887460647 scopus 로고    scopus 로고
    • PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells
    • Kaneko, S., Son, J., Shen, S. S., Reinberg, D. & Bonasio, R. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1258-1264 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1258-1264
    • Kaneko, S.1    Son, J.2    Shen, S.S.3    Reinberg, D.4    Bonasio, R.5
  • 39
    • 84904507962 scopus 로고    scopus 로고
    • Regulatory interactions between RNA and Polycomb repressive complex 2
    • Cifuentes-Rojas, C., Hernandez, A. J., Sarma, K. & Lee, J. T. Regulatory interactions between RNA and Polycomb repressive complex 2. Mol. Cell 55, 171-185 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 171-185
    • Cifuentes-Rojas, C.1    Hernandez, A.J.2    Sarma, K.3    Lee, J.T.4
  • 40
    • 84907146072 scopus 로고    scopus 로고
    • Nascent RNA interaction keeps PRC2 activity poised and in check
    • Kaneko, S., Son, J., Bonasio, R., Shen, S. S. & Reinberg, D. Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev. 28, 1983-1988 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 1983-1988
    • Kaneko, S.1    Son, J.2    Bonasio, R.3    Shen, S.S.4    Reinberg, D.5
  • 41
    • 79955494277 scopus 로고    scopus 로고
    • Histone methylation by PRC2 is inhibited by active chromatin marks
    • Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330-341 (2011).
    • (2011) Mol. Cell , vol.42 , pp. 330-341
    • Schmitges, F.W.1
  • 42
    • 84938310296 scopus 로고    scopus 로고
    • A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element
    • Herzog, V. A. et al. A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element. Nat. Genet. 46, 973-981 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 973-981
    • Herzog, V.A.1
  • 43
    • 84873417354 scopus 로고    scopus 로고
    • An H3K36 methylation-engaging Tudor motif of Polycomb-like proteins mediates PRC2 complex targeting
    • Cai, L. et al. An H3K36 methylation-engaging Tudor motif of Polycomb-like proteins mediates PRC2 complex targeting. Mol. Cell 49, 571-582 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 571-582
    • Cai, L.1
  • 44
    • 84872347438 scopus 로고    scopus 로고
    • Tudor domains of the PRC2 components PHF1 and PHF19 selectively bind to histone H3K36me3
    • Qin, S. et al. Tudor domains of the PRC2 components PHF1 and PHF19 selectively bind to histone H3K36me3. Biochem. Biophys. Res. Commun. 430, 547-553 (2013).
    • (2013) Biochem. Biophys. Res. Commun. , vol.430 , pp. 547-553
    • Qin, S.1
  • 45
    • 84870825642 scopus 로고    scopus 로고
    • Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation
    • Brien, G. L. et al. Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat. Struct. Mol. Biol. 19, 1273-1281 (2012).
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1273-1281
    • Brien, G.L.1
  • 46
    • 84870855250 scopus 로고    scopus 로고
    • Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1
    • Musselman, C. A. et al. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat. Struct. Mol. Biol. 19, 1266-1272 (2012).
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1266-1272
    • Musselman, C.A.1
  • 47
    • 84892856196 scopus 로고    scopus 로고
    • The histone H3 lysine 9 methyltransferases G9a and GLP regulate Polycomb repressive complex 2-mediated gene silencing
    • Mozzetta, C. et al. The histone H3 lysine 9 methyltransferases G9a and GLP regulate Polycomb repressive complex 2-mediated gene silencing. Mol. Cell 53, 277-289 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 277-289
    • Mozzetta, C.1
  • 48
    • 0041624288 scopus 로고    scopus 로고
    • Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27
    • Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823-1828 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1823-1828
    • Min, J.1    Zhang, Y.2    Xu, R.M.3
  • 49
    • 2942574510 scopus 로고    scopus 로고
    • Hierarchical recruitment of Polycomb group silencing complexes
    • Wang, L. et al. Hierarchical recruitment of Polycomb group silencing complexes. Mol. Cell 14, 637-646 (2004).
    • (2004) Mol. Cell , vol.14 , pp. 637-646
    • Wang, L.1
  • 50
    • 33646882068 scopus 로고    scopus 로고
    • Polycomb complexes repress developmental regulators in murine embryonic stem cells
    • Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349-353 (2006).
    • (2006) Nature , vol.441 , pp. 349-353
    • Boyer, L.A.1
  • 51
    • 84857367297 scopus 로고    scopus 로고
    • RYBP-PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3
    • Tavares, L. et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664-678 (2012).
    • (2012) Cell , vol.148 , pp. 664-678
    • Tavares, L.1
  • 52
    • 84902127230 scopus 로고    scopus 로고
    • Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation
    • Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation. Cell 157, 1445-1459 (2014).
    • (2014) Cell , vol.157 , pp. 1445-1459
    • Blackledge, N.P.1
  • 53
    • 84902333500 scopus 로고    scopus 로고
    • Targeting Polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment
    • Cooper, S. et al. Targeting Polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 7, 1456-1470 (2014).
    • (2014) Cell Rep. , vol.7 , pp. 1456-1470
    • Cooper, S.1
  • 54
    • 84901987800 scopus 로고    scopus 로고
    • Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression
    • Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21, 569-571 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 569-571
    • Kalb, R.1
  • 55
    • 84923196763 scopus 로고    scopus 로고
    • TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein
    • Bhatnagar, S. et al. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 516, 116-120 (2014).
    • (2014) Nature , vol.516 , pp. 116-120
    • Bhatnagar, S.1
  • 56
    • 84893152923 scopus 로고    scopus 로고
    • The central role of EED in the orchestration of Polycomb group complexes
    • Cao, Q. et al. The central role of EED in the orchestration of Polycomb group complexes. Nat. Commun. 5, 3127 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3127
    • Cao, Q.1
  • 57
    • 84926161185 scopus 로고    scopus 로고
    • Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner
    • Tardat, M. et al. Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol. Cell 58, 157-171 (2015).
    • (2015) Mol. Cell , vol.58 , pp. 157-171
    • Tardat, M.1
  • 58
    • 84918582083 scopus 로고    scopus 로고
    • O-GlcNAcylation prevents aggregation of the Polycomb group repressor Polyhomeotic
    • Gambetta, M. C. & Müller, J. O-GlcNAcylation prevents aggregation of the Polycomb group repressor Polyhomeotic. Dev. Cell 31, 629-639 (2014).
    • (2014) Dev. Cell , vol.31 , pp. 629-639
    • Gambetta, M.C.1    Müller, J.2
  • 59
    • 84884725454 scopus 로고    scopus 로고
    • SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing
    • Isono, K. et al. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev. Cell 26, 565-577 (2013).
    • (2013) Dev. Cell , vol.26 , pp. 565-577
    • Isono, K.1
  • 60
    • 0036260660 scopus 로고    scopus 로고
    • The SAM domain of Polyhomeotic forms a helical polymer
    • Kim, C. A., Gingery, M., Pilpa, R. M. & Bowie, J. U. The SAM domain of Polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453-457 (2002).
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 453-457
    • Kim, C.A.1    Gingery, M.2    Pilpa, R.M.3    Bowie, J.U.4
  • 61
    • 77951947926 scopus 로고    scopus 로고
    • Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination
    • Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452-464 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 452-464
    • Eskeland, R.1
  • 62
    • 55549103314 scopus 로고    scopus 로고
    • A model for transmission of the H3K27me3 epigenetic mark
    • Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291-1300 (2008).
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1291-1300
    • Hansen, K.H.1
  • 63
    • 70349952171 scopus 로고    scopus 로고
    • Role of the Polycomb protein EED in the propagation of repressive histone marks
    • Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762-767 (2009).
    • (2009) Nature , vol.461 , pp. 762-767
    • Margueron, R.1
  • 64
    • 84884616025 scopus 로고    scopus 로고
    • Ras-induced changes in H3K27me3 occur after those in transcriptional activity
    • Hosogane, M., Funayama, R., Nishida, Y., Nagashima, T. & Nakayama, K. Ras-induced changes in H3K27me3 occur after those in transcriptional activity. PLoS Genet. 9, e1003698 (2013).
    • (2013) PLoS Genet. , vol.9 , pp. e1003698
    • Hosogane, M.1    Funayama, R.2    Nishida, Y.3    Nagashima, T.4    Nakayama, K.5
  • 65
    • 84905572005 scopus 로고    scopus 로고
    • Gene silencing triggers Polycomb repressive complex 2 recruitment to CpG islands genome wide
    • Riising, E. M. et al. Gene silencing triggers Polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347-360 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 347-360
    • Riising, E.M.1
  • 66
    • 84884626274 scopus 로고    scopus 로고
    • Chromatin sampling-an emerging perspective on targeting Polycomb repressor proteins
    • Klose, R. J., Cooper, S., Farcas, A. M., Blackledge, N. P. & Brockdorff, N. Chromatin sampling-an emerging perspective on targeting Polycomb repressor proteins. PLoS Genet. 9, e1003717 (2013).
    • (2013) PLoS Genet. , vol.9 , pp. e1003717
    • Klose, R.J.1    Cooper, S.2    Farcas, A.M.3    Blackledge, N.P.4    Brockdorff, N.5
  • 67
    • 8844265508 scopus 로고    scopus 로고
    • Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins
    • Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413-443 (2004).
    • (2004) Annu. Rev. Genet. , vol.38 , pp. 413-443
    • Ringrose, L.1    Paro, R.2
  • 68
    • 33646070846 scopus 로고    scopus 로고
    • A bivalent chromatin structure marks key developmental genes in embryonic stem cells
    • Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326 (2006).
    • (2006) Cell , vol.125 , pp. 315-326
    • Bernstein, B.E.1
  • 69
    • 33646872978 scopus 로고    scopus 로고
    • Chromatin signatures of pluripotent cell lines
    • Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532-538 (2006).
    • (2006) Nat. Cell Biol. , vol.8 , pp. 532-538
    • Azuara, V.1
  • 70
    • 84879260661 scopus 로고    scopus 로고
    • A double take on bivalent promoters
    • Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318-1338 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 1318-1338
    • Voigt, P.1    Tee, W.W.2    Reinberg, D.3
  • 71
    • 84922217833 scopus 로고    scopus 로고
    • An AUTS2-Polycomb complex activates gene expression in the CNS
    • Gao, Z. et al. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516, 349-354 (2014).
    • (2014) Nature , vol.516 , pp. 349-354
    • Gao, Z.1
  • 72
    • 84921592316 scopus 로고    scopus 로고
    • Developmental control of Polycomb subunit composition by GATA factors mediates a switch to non-canonical functions
    • Xu, J. et al. Developmental control of Polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol. Cell 57, 304-316 (2015).
    • (2015) Mol. Cell , vol.57 , pp. 304-316
    • Xu, J.1
  • 73
    • 84892366110 scopus 로고    scopus 로고
    • Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity
    • Ferrari, K. J. et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53, 49-62 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 49-62
    • Ferrari, K.J.1
  • 74
    • 84881497258 scopus 로고    scopus 로고
    • Molecular architecture of human Polycomb repressive complex 2
    • Ciferri, C. et al. Molecular architecture of human Polycomb repressive complex 2. eLife 1, e00005 (2012).
    • (2012) ELife , vol.1 , pp. e00005
    • Ciferri, C.1
  • 75
    • 84908408859 scopus 로고    scopus 로고
    • Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome
    • McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591-596 (2014).
    • (2014) Nature , vol.514 , pp. 591-596
    • McGinty, R.K.1    Henrici, R.C.2    Tan, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.