메뉴 건너뛰기




Volumn 76, Issue 3, 2010, Pages 851-859

Metabolic impact of increased NADH availability in saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ATTRACTIVE STRATEGIES; BIOPROCESSES; BRANCH POINTS; COFACTORS; CYTOSOLIC; CYTOSOLS; DE-REPRESSION; ETHANOL PRODUCTION; FORMATE DEHYDROGENASE; INTRACELLULAR CONCENTRATION; METABOLIC FLUX; METABOLIC NETWORK; METABOLIC PATHWAYS; MUTANT STRAIN; OVER-EXPRESSION; S.CEREVISIAE; SACCHAROMYCES CEREVISIAE; SIGNAL SEQUENCE; STEADY STATE; SUGAR PHOSPHATE;

EID: 75749121857     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.02040-09     Document Type: Article
Times cited : (45)

References (40)
  • 1
    • 70350521215 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: Current status and challenges
    • Abbott, D. A., R. M. Zelle, J. T. Pronk, and A. J. van Maris. 2009. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res. 9:1123-1136.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 1123-1136
    • Abbott, D.A.1    Zelle, R.M.2    Pronk, J.T.3    Van Maris, A.J.4
  • 2
    • 0021024592 scopus 로고
    • Improvement of growth yield of yeast on glucose to the maximum by using an additional energy source
    • Babel, W., R. H. Muller, and K. D. Markuske. 1983. Improvement of growth yield of yeast on glucose to the maximum by using an additional energy source. Arch. Microbiol. 136:203-208.
    • (1983) Arch. Microbiol. , vol.136 , pp. 203-208
    • Babel, W.1    Muller, R.H.2    Markuske, K.D.3
  • 4
    • 0021822522 scopus 로고
    • Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS 621 and Saccharomyces cerevisiae CBS 8066
    • Bruinenberg, P. M., R. Jonker, J. P. van Dijken, and W. A. Scheffers. 1985. Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS 621 and Saccharomyces cerevisiae CBS 8066. Arch. Microbiol. 142:302-306.
    • (1985) Arch. Microbiol , vol.142 , pp. 302-306
    • Bruinenberg, P.M.1    Jonker, R.2    Van Dijken, J.P.3    Scheffers, W.A.4
  • 5
    • 0020626034 scopus 로고
    • An enzymic analysis of NADPH production and consumption, in Candida utilis
    • Bruinenberg, P. M., J. P. Van Dijken, and W. A. Scheffers. 1983. An enzymic analysis of NADPH production and consumption, in Candida utilis. J. Gen. Microbiol. 129:965-971.
    • (1983) J. Gen. Microbiol. , vol.129 , pp. 965-971
    • Bruinenberg, P.M.1    Van Dijken, J.P.2    Scheffers, W.A.3
  • 6
    • 13544262322 scopus 로고    scopus 로고
    • Competition of electrons to enter the respiratory chain: A new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae
    • Bunoust, O., A. Devin, N. Averet, N. Camougrand, and M. Rigoulet. 2005. Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae. J. Biol. Chem. 280:3407-3413.
    • (2005) J. Biol. Chem. , vol.280 , pp. 3407-3413
    • Bunoust, O.1    Devin, A.2    Averet, N.3    Camougrand, N.4    Rigoulet, M.5
  • 8
    • 0023561970 scopus 로고
    • The mitochondrial respiratory chain of yeast
    • Structure and biosynthesis and the role in cellular metabolism.
    • de Vries, S., and C. A. Marres. 1987. The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim. Biophys. Acta 895:205-239.
    • (1987) Biochim. Biophys. Acta , vol.895 , pp. 205-239
    • De Vries, S.1    Marres, C.A.2
  • 10
    • 34248531753 scopus 로고    scopus 로고
    • Locating proteins in the cell using target P, signal P and related tools
    • Emanuelsson, O., S. Brunak, G. von Heijne, and H. Nielsen. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2:953-971.
    • (2007) Nat. Protoc. , vol.2 , pp. 953-971
    • Emanuelsson, O.1    Brunak, S.2    Von Heijne, G.3    Nielsen, H.4
  • 11
    • 33751279921 scopus 로고    scopus 로고
    • Engineering NADH metabolism in Saccharomyces cerevisiae: Formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures
    • Geertman, J. M., J. P. Van Dijken, and J. T. Pronk. 2006. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res. 6:1193-1203.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 1193-1203
    • Geertman, J.M.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 12
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
    • Gombert, A. K., M. Moreira dos Santos, B. Christensen, and J. Nielsen. 2001. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183:1441-1451..
    • (2001) J. Bacteriol. , vol.183 , pp. 1441-1451
    • Gombert, A.K.1    Moreira Dos Santos, M.2    Christensen, B.3    Nielsen, J.4
  • 13
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Guadalupe Medina, V., M. J. H. Almering, A. J. A. van Maris, and J. T. Pronk. 2010. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl. Environ. Microbiol. 76:190-195.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 190-195
    • Guadalupe Medina, V.1    Almering, M.J.H.2    Van Maris, A.J.A.3    Pronk, J.T.4
  • 14
    • 33746891860 scopus 로고    scopus 로고
    • Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism
    • Heux, S., R. Cachon, and S. Dequin. 2006. Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 8:303-314.
    • (2006) Metab. Eng. , vol.8 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 15
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in saccharomyces cerevisiae
    • Hou, J., N. F. Lages, M. Oldiges, and G. N. Vemuri. 2009. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab. Eng. 11:253-261.
    • (2009) Metab. Eng. , vol.11 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 16
    • 75749088325 scopus 로고    scopus 로고
    • Using regulatory information to manipulate glycerol metabolism in Saccharomyces cerevisiae
    • Hou, J., and G. N. Vemuri. 2010. Using regulatory information to manipulate glycerol metabolism in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 85:1123-1130.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1123-1130
    • Hou, J.1    Vemuri, G.N.2
  • 17
    • 31844436264 scopus 로고    scopus 로고
    • Yeast ABC transporters - A tale of sex, stress, drugs and aging
    • DOI 10.1016/j.febslet.2005.12.050, PII S0014579305015334, ABC Transporters
    • Jungwirth, H., and K. Kuchler. 2006. Yeast ABC transporters-a tale of sex, stress, drugs and aging. FEBS Lett. 580:1131-1138. (Pubitemid 43185293)
    • (2006) FEBS Letters , vol.580 , Issue.4 , pp. 1131-1138
    • Jungwirth, H.1    Kuchler, K.2
  • 18
    • 15644371838 scopus 로고    scopus 로고
    • The role of yeast VDAC genes on the permeability of the mitochondrial outer membrane
    • Lee, A. C, X. Xu, E. Blachly-Dyson, M. Forte, and M. Colombini. 1998. The role of yeast VDAC genes on the permeability of the mitochondrial outer membrane. J. Membr. Biol. 161:173-181.
    • (1998) J. Membr. Biol. , vol.161 , pp. 173-181
    • Lee, A.C.1    Xu, X.2    Blachly-Dyson, E.3    Forte, M.4    Colombini, M.5
  • 19
    • 0029861775 scopus 로고    scopus 로고
    • The role of pyridine dinucleotides in regulating the permeability of the mitochondrial outer membrane
    • Lee, A. C., X. Xu, and M. Colombini. 1996. The role of pyridine dinucleotides in regulating the permeability of the mitochondrial outer membrane. J. Biol. Chem. 271:26724-26731.
    • (1996) J. Biol. Chem. , vol.271 , pp. 26724-26731
    • Lee, A.C.1    Xu, X.2    Colombini, M.3
  • 20
    • 33947503169 scopus 로고    scopus 로고
    • Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry
    • DOI 10.1016/j.chroma.2007.02.034, PII S0021967307002907
    • Luo, B., K. Groenke, R. Takors, C. Wandrey, and M. Oldiges. 2007. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J. Chromatogr. A 1147:153-164. (Pubitemid 46466829)
    • (2007) Journal of Chromatography A , vol.1147 , Issue.2 , pp. 153-164
    • Luo, B.1    Groenke, K.2    Takors, R.3    Wandrey, C.4    Oldiges, M.5
  • 21
    • 0032544505 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH
    • Luttik, M. A., K. M. Overkamp, P. Kotter, S. de Vries, J. P. van Dijken, and J. T. Pronk. 1998. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273:24529-24534.
    • (1998) J. Biol. Chem. , vol.273 , pp. 24529-24534
    • Luttik, M.A.1    Overkamp, K.M.2    Kotter, P.3    De Vries, S.4    Van Dijken, J.P.5    Pronk, J.T.6
  • 22
    • 0026089901 scopus 로고
    • Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: Ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae
    • Marres, C. A., S. de Vries, and L. A. Grivell. 1991. Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur. J. Biochem. 195:857-862.
    • (1991) Eur. J. Biochem. , vol.195 , pp. 857-862
    • Marres, C.A.1    De Vries, S.2    Grivell, L.A.3
  • 23
    • 0022161592 scopus 로고
    • Formate gradients as a means for detecting the maximum carbon conversion efficiency of heterotrophic substrates: Correlation between formate utilization, and biomass increase
    • Muller, R. H., K. D. Markuske, and W. Babel. 1985. Formate gradients as a means for detecting the maximum carbon conversion efficiency of heterotrophic substrates: correlation between formate utilization, and biomass increase. Biotechnol. Bioeng. 27:1599-1602.
    • (1985) Biotechnol. Bioeng. , vol.27 , pp. 1599-1602
    • Muller, R.H.1    Markuske, K.D.2    Babel, W.3
  • 24
    • 0032487751 scopus 로고    scopus 로고
    • A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenasecatalyzed coenzyme regeneration
    • Neuhauser, W., M. Steininger, D. Haltrich, K. D. Kulbe, and B. Nidetzky . 1998. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenasecatalyzed coenzyme regeneration. Biotechnol. Bioeng. 60:277-282.
    • (1998) Biotechnol. Bioeng. , vol.60 , pp. 277-282
    • Neuhauser, W.1    Steininger, M.2    Haltrich, D.3    Kulbe, K.D.4    Nidetzky, B.5
  • 25
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of saccharomyces cerevisiae
    • Nevoigt, E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72:379-412.
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 26
    • 41549116226 scopus 로고    scopus 로고
    • Anticipating antiport in P-type ATPases
    • Niggli, V., and E. Sigel. 2008. Anticipating antiport in P-type ATPases. Trends Biochem. Sci. 33:156-160.
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 156-160
    • Niggli, V.1    Sigel, E.2
  • 28
    • 70449519261 scopus 로고    scopus 로고
    • Impact of yeast systems biology on industrial biotechnology
    • Petranovic, D., and G. N. Vemuri. 2009. Impact of yeast systems biology on industrial biotechnology. J. Biotechnol. 144:204-211.
    • (2009) J. Biotechnol. , vol.144 , pp. 204-211
    • Petranovic, D.1    Vemuri, G.N.2
  • 29
    • 0032479995 scopus 로고    scopus 로고
    • The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast
    • DOI 10.1093/emboj/17.15.4257
    • Piper, P., Y. Mahe, S. Thompson, R. Pandjaitan, C. Holyoak, R. Egner, M. Muhlbauer, P. Coote, and K. Kuchler. 1998. The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J. 17:4257-4265. (Pubitemid 28362616)
    • (1998) EMBO Journal , vol.17 , Issue.15 , pp. 4257-4265
    • Piper, P.1    Mahe, Y.2    Thompson, S.3    Pandjaitan, R.4    Holyoak, C.5    Egner, R.6    Muhlbauer, M.7    Coote, P.8    Kuchler, K.9
  • 30
    • 0035824654 scopus 로고    scopus 로고
    • Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini
    • Sass, E., E. Blachinsky, S. Karniely, and O. Pines. 2001. Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J. Biol. Chem. 276:46111-46117.
    • (2001) J. Biol. Chem. , vol.276 , pp. 46111-46117
    • Sass, E.1    Blachinsky, E.2    Karniely, S.3    Pines, O.4
  • 31
    • 0742270637 scopus 로고    scopus 로고
    • Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae
    • Schuller, C., Y. M. Mamnun, M. Mollapour, G. Krapf, M. Schuster, B. E. Bauer, P. W. Piper, and K. Kuchler. 2004. Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol. Biol. Cell 15:706-720.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 706-720
    • Schuller, C.1    Mamnun, Y.M.2    Mollapour, M.3    Krapf, G.4    Schuster, M.5    Bauer, B.E.6    Piper, P.W.7    Kuchler, K.8
  • 33
    • 0032528360 scopus 로고    scopus 로고
    • Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection
    • Smits, H. P., A. Cohen, T. Buttler, J. Nielsen, and L. Olsson. 1998. Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection. Anal. Biochem. 261:36-42.
    • (1998) Anal. Biochem. , vol.261 , pp. 36-42
    • Smits, H.P.1    Cohen, A.2    Buttler, T.3    Nielsen, J.4    Olsson, L.5
  • 35
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • Van Dijken, J. P., and W. A. Scheffers. 1986. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32:199-224.
    • (1986) FEMS Microbiol. Rev. , vol.32 , pp. 199-224
    • Van Dijken, J.P.1    Scheffers, W.A.2
  • 38
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation, of respiration and alcoholic fermentation
    • Verduyn, C., E. Postma, W. A. Scheffers, and J. P. Van Dijken. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation, of respiration and alcoholic fermentation. Yeast 8:501-517.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 39
    • 0014734642 scopus 로고
    • Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis
    • von Jagow, G., and M. Klingenberg. 1970. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur. J. Biochem. 12:583-592.
    • (1970) Eur. J. Biochem. , vol.12 , pp. 583-592
    • Von Jagow, G.1    Klingenberg, M.2
  • 40
    • 50249105159 scopus 로고    scopus 로고
    • Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply
    • Wattanachaisaereekul, S., A. E. Lantz, M. L. Nielsen, and J. Nielsen. 2008. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metab. Eng. 10:246-254.
    • (2008) Metab. Eng. , vol.10 , pp. 246-254
    • Wattanachaisaereekul, S.1    Lantz, A.E.2    Nielsen, M.L.3    Nielsen, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.