메뉴 건너뛰기




Volumn 25, Issue 6, 2015, Pages 866-874

Gray Matter Alterations in Young Children with Autism Spectrum Disorders: Comparing Morphometry at the Voxel and Regional Level

Author keywords

Autism spectrum disorders; Classification; Feature extraction; Machine learning; Magnetic resonance imaging; Support vector machines

Indexed keywords

BRAIN EXTRACT;

EID: 84944512339     PISSN: 10512284     EISSN: 15526569     Source Type: Journal    
DOI: 10.1111/jon.12280     Document Type: Article
Times cited : (53)

References (64)
  • 1
    • 84898957499 scopus 로고    scopus 로고
    • Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2010
    • Centers for Disease Control and Prevention. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2010. Morbidity and Mortality Weekly Report 2014;63:1-22.
    • (2014) Morbidity and Mortality Weekly Report , vol.63 , pp. 1-22
  • 3
    • 84893844183 scopus 로고    scopus 로고
    • Disentangling the heterogeneity of autism spectrum disorder through genetic findings
    • Jeste SS, Geschwind DH. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 2014;10:74-81.
    • (2014) Nat Rev Neurol , vol.10 , pp. 74-81
    • Jeste, S.S.1    Geschwind, D.H.2
  • 4
    • 84927614284 scopus 로고    scopus 로고
    • Environmental contributions to autism: explaining the rise in incidence of autistic spectrum disorders
    • Scott JG, Duhig M, Hamlyn J, et al. Environmental contributions to autism: explaining the rise in incidence of autistic spectrum disorders. J Environ Immunol Toxicol 2013;2:75-9.
    • (2013) J Environ Immunol Toxicol , vol.2 , pp. 75-79
    • Scott, J.G.1    Duhig, M.2    Hamlyn, J.3
  • 5
    • 83055181241 scopus 로고    scopus 로고
    • Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses
    • Calderoni S, Retico A, Biagi L, et al. Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses. Neuroimage 2012;59:1013-22.
    • (2012) Neuroimage , vol.59 , pp. 1013-1022
    • Calderoni, S.1    Retico, A.2    Biagi, L.3
  • 6
    • 0035943033 scopus 로고    scopus 로고
    • Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study
    • Courchesne E, Karns CM, Davis HR, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001;57:245-54.
    • (2001) Neurology , vol.57 , pp. 245-254
    • Courchesne, E.1    Karns, C.M.2    Davis, H.R.3
  • 7
    • 28544442720 scopus 로고    scopus 로고
    • Magnetic resonance imaging and head circumference study of brain size in autism - birth through age 2 years
    • Hazlett HC, Poe M, Gerig G, et al. Magnetic resonance imaging and head circumference study of brain size in autism - birth through age 2 years. Arch Gen Psychiatry 2005;62:1366-76.
    • (2005) Arch Gen Psychiatry , vol.62 , pp. 1366-1376
    • Hazlett, H.C.1    Poe, M.2    Gerig, G.3
  • 8
    • 0037162380 scopus 로고    scopus 로고
    • Brain structural abnormalities in young children with autism spectrum disorder
    • Sparks BF, Friedman SD, Shaw DW, et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002;59:184-92.
    • (2002) Neurology , vol.59 , pp. 184-192
    • Sparks, B.F.1    Friedman, S.D.2    Shaw, D.W.3
  • 9
    • 84882306984 scopus 로고    scopus 로고
    • Brain anatomy of autism spectrum disorders I. Focus on corpus callosum
    • Bellani M, Calderoni S, Muratori F, et al. Brain anatomy of autism spectrum disorders I. Focus on corpus callosum. Epidemiol Psychiatr Sci 2013;22:217-21.
    • (2013) Epidemiol Psychiatr Sci , vol.22 , pp. 217-221
    • Bellani, M.1    Calderoni, S.2    Muratori, F.3
  • 10
    • 84889772622 scopus 로고    scopus 로고
    • Brain anatomy of autism spectrum disorders II. Focus on amygdala
    • Bellani M, Calderoni S, Muratori F, et al. Brain anatomy of autism spectrum disorders II. Focus on amygdala. Epidemiol Psychiatr Sci 2013;22:309-12.
    • (2013) Epidemiol Psychiatr Sci , vol.22 , pp. 309-312
    • Bellani, M.1    Calderoni, S.2    Muratori, F.3
  • 11
    • 84944516108 scopus 로고    scopus 로고
    • Basal ganglia and restricted and repetitive behaviors in autism spectrum disorders: current status and future perspectives
    • Calderoni S, Bellani M, Hardan AY, et al. Basal ganglia and restricted and repetitive behaviors in autism spectrum disorders: current status and future perspectives. Epidemiol Psychiatr Sci 2014;12:1-4.
    • (2014) Epidemiol Psychiatr Sci , vol.12 , pp. 1-4
    • Calderoni, S.1    Bellani, M.2    Hardan, A.Y.3
  • 12
    • 80053003849 scopus 로고    scopus 로고
    • In search of biomarkers for autism: scientific, social and ethical challenges
    • Walsh P, Elsabbagh M, Bolton P, et al. In search of biomarkers for autism: scientific, social and ethical challenges. Nat Rev Neurosci 2011;12:603-12.
    • (2011) Nat Rev Neurosci , vol.12 , pp. 603-612
    • Walsh, P.1    Elsabbagh, M.2    Bolton, P.3
  • 13
    • 84924853647 scopus 로고    scopus 로고
    • Neuroimaging-based methods for autism identification: a possible translational application? Functional
    • Retico A, Tosetti M, Muratori F, et al. Neuroimaging-based methods for autism identification: a possible translational application? Functional Neurology 2014;29(4):231-9.
    • (2014) Neurology , vol.29 , Issue.4 , pp. 231-239
    • Retico, A.1    Tosetti, M.2    Muratori, F.3
  • 14
    • 73849088741 scopus 로고    scopus 로고
    • Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation
    • Morra JH, Tu Z, Apostolova LG, et al. Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation. IEEE Trans Med Imaging 2010;29:30-43.
    • (2010) IEEE Trans Med Imaging , vol.29 , pp. 30-43
    • Morra, J.H.1    Tu, Z.2    Apostolova, L.G.3
  • 15
    • 84869778045 scopus 로고    scopus 로고
    • A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer's disease
    • Nestor SM, Gibson E, Gao FQ, et al. A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer's disease. Neuroimage 2012;66C:50-70.
    • (2012) Neuroimage , vol.66C , pp. 50-70
    • Nestor, S.M.1    Gibson, E.2    Gao, F.Q.3
  • 16
    • 80051784240 scopus 로고    scopus 로고
    • Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease
    • Chincarini A, Bosco P, Calvini P, et al. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Neuroimage 2011;58:469-80.
    • (2011) Neuroimage , vol.58 , pp. 469-480
    • Chincarini, A.1    Bosco, P.2    Calvini, P.3
  • 17
    • 84879843900 scopus 로고    scopus 로고
    • Generating a minimal set of templates for the hippocampal region in MR neuroimages
    • Cataldo R, Agrusti A, De Nunzio G, et al. Generating a minimal set of templates for the hippocampal region in MR neuroimages. J Neuroimaging 2013;23(3):473-83.
    • (2013) J Neuroimaging , vol.23 , Issue.3 , pp. 473-483
    • Cataldo, R.1    Agrusti, A.2    De Nunzio, G.3
  • 18
    • 2342422262 scopus 로고    scopus 로고
    • Outcome classification of preschool children with autism spectrum disorders using MRI brain measures
    • Akshoomoff N, Lord C, Lincoln AJ, et al. Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. J Am Acad Child Adolesc Psychiatry 2004;43:349-57.
    • (2004) J Am Acad Child Adolesc Psychiatry , vol.43 , pp. 349-357
    • Akshoomoff, N.1    Lord, C.2    Lincoln, A.J.3
  • 19
    • 34248569902 scopus 로고    scopus 로고
    • Quantitative temporal lobe differences: autism distinguished from controls using classification and regression tree analysis
    • Neeley ES, Bigler ED, Krasny L, et al. Quantitative temporal lobe differences: autism distinguished from controls using classification and regression tree analysis. Brain Dev 2007;29:389-99.
    • (2007) Brain Dev , vol.29 , pp. 389-399
    • Neeley, E.S.1    Bigler, E.D.2    Krasny, L.3
  • 20
    • 58849098790 scopus 로고    scopus 로고
    • Cortical surface thickness as a classifier: boosting for autism classification
    • Singh V, Mukherjee L, Chung MK. Cortical surface thickness as a classifier: boosting for autism classification. MICCAI 2008;11:999-1007.
    • (2008) MICCAI , vol.11 , pp. 999-1007
    • Singh, V.1    Mukherjee, L.2    Chung, M.K.3
  • 21
    • 77952298475 scopus 로고    scopus 로고
    • Predictive models of autism spectrum disorder based on brain regional cortical thickness
    • Jiao Y, Chen R, Ke X, et al. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 2010;50:589-99.
    • (2010) Neuroimage , vol.50 , pp. 589-599
    • Jiao, Y.1    Chen, R.2    Ke, X.3
  • 22
    • 77956214538 scopus 로고    scopus 로고
    • Describing the brain in autism in five dimensions-magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
    • Ecker C, Marquand A, Mourão-Miranda J, et al. Describing the brain in autism in five dimensions-magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 2010;30:10612-23.
    • (2010) J Neurosci , vol.30 , pp. 10612-10623
    • Ecker, C.1    Marquand, A.2    Mourão-Miranda, J.3
  • 23
    • 84874438332 scopus 로고    scopus 로고
    • Inter-regional cortical thickness correlations are associated with autistic symptoms: a machine-learning approach
    • Sato JR, Hoexter MQ, Oliveira PP, et al. Inter-regional cortical thickness correlations are associated with autistic symptoms: a machine-learning approach. J Psychiatr Res 2013;47:453-9.
    • (2013) J Psychiatr Res , vol.47 , pp. 453-459
    • Sato, J.R.1    Hoexter, M.Q.2    Oliveira, P.P.3
  • 24
    • 70349964707 scopus 로고    scopus 로고
    • Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach
    • Ecker C, Rocha-Rego V, Johnston P, et al. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 2010;49:44-56.
    • (2010) Neuroimage , vol.49 , pp. 44-56
    • Ecker, C.1    Rocha-Rego, V.2    Johnston, P.3
  • 25
    • 80053952154 scopus 로고    scopus 로고
    • Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism
    • Uddin LQ, Menon V, Young CB, et al. Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol Psychiatry 2011;70:833-41.
    • (2011) Biol Psychiatry , vol.70 , pp. 833-841
    • Uddin, L.Q.1    Menon, V.2    Young, C.B.3
  • 26
    • 79954990666 scopus 로고    scopus 로고
    • Introduction to machine learning for brain imaging
    • Lemm S, Blankertz B, Dickhaus T, et al. Introduction to machine learning for brain imaging. Neuroimage 2011;56:387-9.
    • (2011) Neuroimage , vol.56 , pp. 387-389
    • Lemm, S.1    Blankertz, B.2    Dickhaus, T.3
  • 27
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
    • Orrù G, Pettersson-Yeo W, Marquand AF, et al. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 2012;36:1140-52.
    • (2012) Neurosci Biobehav Rev , vol.36 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3
  • 28
    • 0038601952 scopus 로고    scopus 로고
    • Evidence of brain overgrowth in the first year of life in autism
    • Courchesne E, Carper R, Akshoomoff N, et al. Evidence of brain overgrowth in the first year of life in autism. JAMA 2003;290:337-44.
    • (2003) JAMA , vol.290 , pp. 337-344
    • Courchesne, E.1    Carper, R.2    Akshoomoff, N.3
  • 29
    • 78649897373 scopus 로고    scopus 로고
    • Age-related temporal and parietal cortical thinning in autism spectrum disorders
    • Wallace GL, Dankner N, Kenworthy L, et al. Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain 2010;133(Pt 12):3745-54.
    • (2010) Brain , vol.133 , pp. 3745-3754
    • Wallace, G.L.1    Dankner, N.2    Kenworthy, L.3
  • 30
    • 84883444135 scopus 로고    scopus 로고
    • Biological sex affects the neurobiology of autism
    • Lai MC, Lombardo MV, Suckling J, et al. Biological sex affects the neurobiology of autism. Brain 2013;136(Pt 9):2799-815.
    • (2013) Brain , vol.136 , pp. 2799-2815
    • Lai, M.C.1    Lombardo, M.V.2    Suckling, J.3
  • 31
    • 1542276539 scopus 로고    scopus 로고
    • Investigation of neuroanatomical differences between autism and Asperger syndrome
    • Lotspeich LJ, Kwon H, Schumann CM, et al. Investigation of neuroanatomical differences between autism and Asperger syndrome. Arch Gen Psychiatry 2004;61:291-8.
    • (2004) Arch Gen Psychiatry , vol.61 , pp. 291-298
    • Lotspeich, L.J.1    Kwon, H.2    Schumann, C.M.3
  • 32
    • 84944510944 scopus 로고    scopus 로고
    • Diagnostic and Statistical Manual of Mental Disorders, Text Revised (DSM-IV-TR), 4th ed. Washington, DC: American Psychiatric Publishing
    • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Text Revised (DSM-IV-TR), 4th ed. Washington, DC: American Psychiatric Publishing, 2000.
    • (2000)
  • 33
    • 79955601366 scopus 로고    scopus 로고
    • Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years
    • Hazlett HC, Poe MD, Gerig G, et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 2011;68:467-76.
    • (2011) Arch Gen Psychiatry , vol.68 , pp. 467-476
    • Hazlett, H.C.1    Poe, M.D.2    Gerig, G.3
  • 34
    • 65549161267 scopus 로고    scopus 로고
    • Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism
    • Mosconi MW, Cody-Hazlett H, Poe MD, et al. Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Arch Gen Psychiatry 2009;66:509-16.
    • (2009) Arch Gen Psychiatry , vol.66 , pp. 509-516
    • Mosconi, M.W.1    Cody-Hazlett, H.2    Poe, M.D.3
  • 35
    • 77952936489 scopus 로고    scopus 로고
    • Challenges and methods in developmental neuroimaging
    • Crone EA, Poldrack RA, Durston S. Challenges and methods in developmental neuroimaging. Hum Brain Mapp 2010;31:835-7.
    • (2010) Hum Brain Mapp , vol.31 , pp. 835-837
    • Crone, E.A.1    Poldrack, R.A.2    Durston, S.3
  • 36
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000;11:(6 Pt 1):805-21.
    • (2000) Neuroimage , vol.11 , Issue.6 , pp. 805-821
    • Ashburner, J.1    Friston, K.J.2
  • 37
    • 34548832230 scopus 로고    scopus 로고
    • Fast diffeomorphic image registration algorithm
    • Ashburner JA. Fast diffeomorphic image registration algorithm. Neuroimage 2007;38:95-113.
    • (2007) Neuroimage , vol.38 , pp. 95-113
    • Ashburner, J.A.1
  • 38
    • 0032799993 scopus 로고    scopus 로고
    • Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system
    • Fischl B, Sereno MI, Dale A. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 1999;9:195-207.
    • (1999) Neuroimage , vol.9 , pp. 195-207
    • Fischl, B.1    Sereno, M.I.2    Dale, A.3
  • 39
    • 9144254529 scopus 로고    scopus 로고
    • Automatically parcellating the human cerebral cortex
    • Cereb Cortex 14:11-22.
    • Fischl B, vander Kouwe A, Destrieux C, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex 14: 11-22. Cereb Cortex 2004;14:11-22.
    • (2004) Cereb Cortex , vol.14 , pp. 11-22
    • Fischl, B.1    van der Kouwe, A.2    Destrieux, C.3
  • 40
    • 84870906999 scopus 로고    scopus 로고
    • 101 labeled brain images and a consistent human cortical labeling protocol
    • Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci 2012;6:171.
    • (2012) Front Neurosci , vol.6 , pp. 171
    • Klein, A.1    Tourville, J.2
  • 41
    • 58149337362 scopus 로고    scopus 로고
    • comparative reliability of total intracranial volume estimation methods and the influence of atrophy in a longitudinal semantic dementia cohort
    • Pengas G, Pereira JM, Williams GB, et al. comparative reliability of total intracranial volume estimation methods and the influence of atrophy in a longitudinal semantic dementia cohort. J Neuroimaging 2009;19:37-46.
    • (2009) J Neuroimaging , vol.19 , pp. 37-46
    • Pengas, G.1    Pereira, J.M.2    Williams, G.B.3
  • 43
    • 0003450542 scopus 로고
    • The Nature of Statistical Learning Theory
    • Berlin, Germany: Springer-Verlag
    • Vapnik V. The Nature of Statistical Learning Theory. Berlin, Germany: Springer-Verlag, 1995.
    • (1995)
    • Vapnik, V.1
  • 44
    • 84928096240 scopus 로고    scopus 로고
    • Receiver operating characteristic analysis: a tool for the quantitative evaluation of observer performance and imaging systems
    • Metz CE. Receiver operating characteristic analysis: a tool for the quantitative evaluation of observer performance and imaging systems. J Am Coll Radiol 2006;3:413-22.
    • (2006) J Am Coll Radiol , vol.3 , pp. 413-422
    • Metz, C.E.1
  • 45
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 46
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
    • Mourão-Miranda J, Bokde AL, Born C, et al. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. Neuroimage 2005;28:980-5.
    • (2005) Neuroimage , vol.28 , pp. 980-985
    • Mourão-Miranda, J.1    Bokde, A.L.2    Born, C.3
  • 47
    • 34347333571 scopus 로고    scopus 로고
    • Support vector machine learning-based FMRI data group analysis
    • Wang Z, Childress AR, Wang J, et al. Support vector machine learning-based FMRI data group analysis. Neuroimage 2007;36:1139-51.
    • (2007) Neuroimage , vol.36 , pp. 1139-1151
    • Wang, Z.1    Childress, A.R.2    Wang, J.3
  • 48
    • 84877323945 scopus 로고    scopus 로고
    • Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
    • Gaonkar B, Davatzikos C. Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. Neuroimage 2013;78:270-83.
    • (2013) Neuroimage , vol.78 , pp. 270-283
    • Gaonkar, B.1    Davatzikos, C.2
  • 49
    • 0003798642 scopus 로고    scopus 로고
    • Making Large-Scale SVM Learning Practical
    • Schölkopf B, Burges C, Smola A, eds. Cambridge, MA: MIT Press
    • Joachims T. Making Large-Scale SVM Learning Practical. Schölkopf B, Burges C, Smola A, eds. Cambridge, MA: MIT Press, 1999.
    • (1999)
    • Joachims, T.1
  • 50
    • 0038167128 scopus 로고    scopus 로고
    • Learning to Classify Text using Support Vector Machines
    • Kluwer: Springer Science + Business Media, LLC, New York, NY, USA
    • Joachims T. Learning to Classify Text using Support Vector Machines. Kluwer: Springer Science + Business Media, LLC, New York, NY, USA, 2002.
    • (2002)
    • Joachims, T.1
  • 52
    • 84055224143 scopus 로고    scopus 로고
    • Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders
    • Nordahl CW, Lange N, Li DD, et al. Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proc Natl Acad Sci U S A 2011;108:20195-200.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 20195-20200
    • Nordahl, C.W.1    Lange, N.2    Li, D.D.3
  • 53
    • 84871724113 scopus 로고    scopus 로고
    • Mapping cortical anatomy in preschool aged children with autism using surface-based morphometry
    • Raznahan A, Lenroot R, Thurm A, et al. Mapping cortical anatomy in preschool aged children with autism using surface-based morphometry. Neuroimage: Clin 2013;2:111-9.
    • (2013) Neuroimage: Clin , vol.2 , pp. 111-119
    • Raznahan, A.1    Lenroot, R.2    Thurm, A.3
  • 54
    • 77949826586 scopus 로고    scopus 로고
    • Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism
    • Schumann CM, Bloss CS, Barnes CC, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 2010;30:4419-27.
    • (2010) J Neurosci , vol.30 , pp. 4419-4427
    • Schumann, C.M.1    Bloss, C.S.2    Barnes, C.C.3
  • 55
    • 29244445778 scopus 로고    scopus 로고
    • Neuronal correlates of theory of mind and empathy: a functional magnetic resonance imaging study in a nonverbal task
    • Völlm BA, Taylor AN, Richardson P, et al. Neuronal correlates of theory of mind and empathy: a functional magnetic resonance imaging study in a nonverbal task. Neuroimage 2006;29:90-8.
    • (2006) Neuroimage , vol.29 , pp. 90-98
    • Völlm, B.A.1    Taylor, A.N.2    Richardson, P.3
  • 56
    • 79954471384 scopus 로고    scopus 로고
    • Brain volumes in autism and developmental delay - a MRI study
    • Predescu E, Sipos P, Iftene F, et al. Brain volumes in autism and developmental delay - a MRI study. J Cogn Behav Psychother 2010;10:25-38.
    • (2010) J Cogn Behav Psychother , vol.10 , pp. 25-38
    • Predescu, E.1    Sipos, P.2    Iftene, F.3
  • 57
    • 70350145613 scopus 로고    scopus 로고
    • No differences in MR-based volumetry between 2- and 7-year-old children with autism spectrum disorder and developmental delay
    • Zeegers M, Hulshoff Pol H, Durston S, et al. No differences in MR-based volumetry between 2- and 7-year-old children with autism spectrum disorder and developmental delay. Brain Dev 2009;31:725-30.
    • (2009) Brain Dev , vol.31 , pp. 725-730
    • Zeegers, M.1    Hulshoff Pol, H.2    Durston, S.3
  • 58
    • 0037162351 scopus 로고    scopus 로고
    • Effects of age on brain volume and head circumference in autism
    • Aylward EH, Minshew NJ, Field K, et al. Effects of age on brain volume and head circumference in autism. Neurology 2002;59:175-83.
    • (2002) Neurology , vol.59 , pp. 175-183
    • Aylward, E.H.1    Minshew, N.J.2    Field, K.3
  • 59
    • 17344373160 scopus 로고    scopus 로고
    • Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder
    • Palmen SJ, Hulshoff PHE, Kemner C, et al. Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychol Med 2005;35:561-70.
    • (2005) Psychol Med , vol.35 , pp. 561-570
    • Palmen, S.J.1    Hulshoff, P.H.E.2    Kemner, C.3
  • 60
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of FMRI spatial patterns
    • DeMartino F, Valente G, Staeren N, et al. Combining multivariate voxel selection and support vector machines for mapping and classification of FMRI spatial patterns. Neuroimage 2008;43:44-58.
    • (2008) Neuroimage , vol.43 , pp. 44-58
    • De Martino, F.1    Valente, G.2    Staeren, N.3
  • 61
    • 84963799168 scopus 로고    scopus 로고
    • Anatomical abnormalities in autism?
    • Cortex Advance Access published Oct 14
    • Haar S, Berman S, Behrmann M, et al. Anatomical abnormalities in autism? Cereb Cortex Advance Access published Oct 14, 2014, doi: 10.1093/cercor/bhu242.
    • (2014) Cereb
    • Haar, S.1    Berman, S.2    Behrmann, M.3
  • 62
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
    • Cuingnet R, Gerardin E, Tessieras J, et al. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 2011;56:766-81.
    • (2011) Neuroimage , vol.56 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3
  • 63
    • 84862776712 scopus 로고    scopus 로고
    • Alzheimer's disease neuroimaging initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • Chu C, Hsu AL, Chou KH, et al. Alzheimer's disease neuroimaging initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 2012;60:59-70.
    • (2012) Neuroimage , vol.60 , pp. 59-70
    • Chu, C.1    Hsu, A.L.2    Chou, K.H.3
  • 64
    • 84937073920 scopus 로고    scopus 로고
    • Predictive models based on support vector machines: whole-brain versus regional analysis of structural MRI in the Alzheimer's disease
    • Retico A, Bosco P, Cerello P, et al. Predictive models based on support vector machines: whole-brain versus regional analysis of structural MRI in the Alzheimer's disease. J Neuroimaging 2014, doi: 10.1111/jon.12163.
    • (2014) J Neuroimaging
    • Retico, A.1    Bosco, P.2    Cerello, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.