메뉴 건너뛰기




Volumn 29, Issue 4, 2014, Pages 231-239

Neuroimaging-based methods for autism identification: A possible translational application?

Author keywords

Autism spectrum disorders; Brain alterations; Machine learning; Magnetic resonance imaging; Translational research

Indexed keywords

ARTICLE; AUTISM; COMPUTER ANALYSIS; DISEASE SEVERITY; HUMAN; MATHEMATICAL PARAMETERS; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; TRANSLATIONAL RESEARCH; TREATMENT RESPONSE; VOXEL BASED MORPHOMETRY; ARTIFICIAL INTELLIGENCE; BRAIN; CHILD DEVELOPMENT DISORDERS, PERVASIVE; PATHOLOGY; PROCEDURES;

EID: 84924853647     PISSN: 03935264     EISSN: 19713274     Source Type: Journal    
DOI: 10.11138/fneur/2014.29.4.231     Document Type: Article
Times cited : (22)

References (69)
  • 1
    • 2342422262 scopus 로고    scopus 로고
    • Outcome classification of preschool children with autism spectrum disorders using MRI brain measures
    • Akshoomoff N, Lord C, Lincoln AJ, et al (2004). Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. J Am Acad Child Adolesc Psychiatry 43: 349-357.
    • (2004) J am Acad Child Adolesc Psychiatry , vol.43 , pp. 349-357
    • Akshoomoff, N.1    Lord, C.2    Lincoln, A.J.3
  • 2
    • 0003472502 scopus 로고    scopus 로고
    • American Psychiatric Association, 5th ed.).Washington DC, American Psychiatric Publishing
    • American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (5th ed.).Washington DC, American Psychiatric Publishing.
    • (2013) Diagnostic and Statistical Manual of Mental Disorders (DSM-5)
  • 3
    • 34548832230 scopus 로고    scopus 로고
    • A fast diffeomorphic image registration algorithm
    • Ashburner J (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38: 95-113.
    • (2007) Neuroimage , vol.38 , pp. 95-113
    • Ashburner, J.1
  • 5
    • 74149092672 scopus 로고    scopus 로고
    • MRI findings in 77 children with non-syndromic autistic disorder
    • Boddaert N, Zilbovicius M, Philipe A, et al (2009). MRI findings in 77 children with non-syndromic autistic disorder. PLoS One 4: e4415.
    • (2009) Plos One , vol.4
    • Boddaert, N.1    Zilbovicius, M.2    Philipe, A.3
  • 6
    • 83055181241 scopus 로고    scopus 로고
    • Female children with autism spectrum disorder: An insight from mass-univariate and pattern classification analyses
    • Calderoni S, Retico A, Biagi L, et al (2012). Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses. Neuroimage 59:1013-1022.
    • (2012) Neuroimage , vol.59 , pp. 1013-1022
    • Calderoni, S.1    Retico, A.2    Biagi, L.3
  • 7
    • 0036677965 scopus 로고    scopus 로고
    • Cerebral lobes in autism: Early hyperplasia and abnormal age effects
    • Carper RA, Moses P, Tigue ZD, et al (2002). Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 16: 1038-1051.
    • (2002) Neuroimage , vol.16 , pp. 1038-1051
    • Carper, R.A.1    Moses, P.2    Tigue, Z.D.3
  • 8
    • 84857630976 scopus 로고    scopus 로고
    • Classification of schizophrenia using feature-based morphometry
    • Castellani U, Rossato E, Murino V, et al (2012). Classification of schizophrenia using feature-based morphometry. J Neural Transm 119: 395-404.
    • (2012) J Neural Transm , vol.119 , pp. 395-404
    • Castellani, U.1    Rossato, E.2    Murino, V.3
  • 9
    • 84898957499 scopus 로고    scopus 로고
    • Prevalence of autism spectrum disorder among children aged 8 years - Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2010
    • Centers for Disease Control and Prevention
    • Centers for Disease Control and Prevention (2014). Prevalence of autism spectrum disorder among children aged 8 years - Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2010. Morbidity and Mortality Weekly Report (MMWR) Surveillance Summaries 63: 1-22.
    • (2014) Morbidity and Mortality Weekly Report (MMWR) Surveillance Summaries , vol.63 , pp. 1-22
  • 10
    • 33846659444 scopus 로고    scopus 로고
    • Autism spectrum disorder in the second year: Stability and change in syndrome expression
    • Chawarska K, Klin A, Paul R, et al (2007). Autism spectrum disorder in the second year: stability and change in syndrome expression. J Child Psychol Psychiatry 48: 128-138.
    • (2007) J Child Psychol Psychiatry , vol.48 , pp. 128-138
    • Chawarska, K.1    Klin, A.2    Paul, R.3
  • 11
    • 79954627753 scopus 로고    scopus 로고
    • Structural MRI in autism spectrum disorder
    • Chen R, Jiao Y, Herskovits EH (2011). Structural MRI in autism spectrum disorder. Pediatr Res 69: 63R-68R.
    • (2011) Pediatr Res , vol.69 , pp. 63R-68R
    • Chen, R.1    Jiao, Y.2    Herskovits, E.H.3
  • 12
    • 80051784240 scopus 로고    scopus 로고
    • Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease
    • Chincarini A, Bosco P, Calvini P, et al (2011). Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage 58: 469-480.
    • (2011) Neuroimage , vol.58 , pp. 469-480
    • Chincarini, A.1    Bosco, P.2    Calvini, P.3
  • 13
    • 84855418467 scopus 로고    scopus 로고
    • Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data
    • Cho Y, Seong JK, Jeong Y, et al (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59: 2217-2230.
    • (2012) Neuroimage , vol.59 , pp. 2217-2230
    • Cho, Y.1    Seong, J.K.2    Jeong, Y.3
  • 14
    • 68149169975 scopus 로고    scopus 로고
    • Prognostic and diagnostic potential of the structural neuroanatomy of depression
    • Costafreda SG, Chu C, Ashburner J, et al (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One 4: e6353.
    • (2009) Plos One , vol.4
    • Costafreda, S.G.1    Chu, C.2    Ashburner, J.3
  • 15
    • 0035943033 scopus 로고    scopus 로고
    • Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study
    • Courchesne E, Karns CM, Davis HR, et al (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57: 245-254.
    • (2001) Neurology , vol.57 , pp. 245-254
    • Courchesne, E.1    Karns, C.M.2    Davis, H.R.3
  • 16
    • 0032769093 scopus 로고    scopus 로고
    • Cortical surface-based analysis. I. Segmentation and surface reconstruction
    • Dale AM, Fischl B, Sereno MI (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9: 179-194.
    • (1999) Neuroimage , vol.9 , pp. 179-194
    • Dale, A.M.1    Fischl, B.2    Sereno, M.I.3
  • 17
    • 84867891791 scopus 로고    scopus 로고
    • Early behavioral intervention is associated with normalized brain activity in young children with autism
    • Dawson G, Jones EJ, Merkle K, et al (2012). Early behavioral intervention is associated with normalized brain activity in young children with autism. J Am Acad Child Adolesc Psychiatry 51: 1150-1159.
    • (2012) J am Acad Child Adolesc Psychiatry , vol.51 , pp. 1150-1159
    • Dawson, G.1    Jones, E.J.2    Merkle, K.3
  • 18
    • 84886410588 scopus 로고    scopus 로고
    • Identification of neural connectivity signatures of autism using machine learning
    • Deshpande G, Libero LE, Sreenivasan KR, et al (2013). Identification of neural connectivity signatures of autism using machine learning. Front Hum Neurosci 7: 670.
    • (2013) Front Hum Neurosci , vol.7 , pp. 670
    • Deshpande, G.1    Libero, L.E.2    Sreenivasan, K.R.3
  • 19
    • 79959323867 scopus 로고    scopus 로고
    • Disrupted neural synchronization in toddlers with autism
    • Dinstein I, Pierce K, Eyler L, et al (2011). Disrupted neural synchronization in toddlers with autism. Neuron 70: 1218-1225.
    • (2011) Neuron , vol.70 , pp. 1218-1225
    • Dinstein, I.1    Pierce, K.2    Eyler, L.3
  • 20
    • 84893830237 scopus 로고    scopus 로고
    • Neuroimaging in autism-from basic science to translational research
    • Ecker C, Murphy D (2014). Neuroimaging in autism-from basic science to translational research. Nat Rev Neurol 10: 82-91.
    • (2014) Nat Rev Neurol , vol.10 , pp. 82-91
    • Ecker, C.1    Murphy, D.2
  • 21
    • 77956214538 scopus 로고    scopus 로고
    • Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
    • Ecker C, Marquand A, Mourão-Miranda J, et al (2010a). Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 30: 10612-10623.
    • (2010) J Neurosci , vol.30 , pp. 10612-10623
    • Ecker, C.1    Marquand, A.2    Mourão-Miranda, J.3
  • 22
    • 70349964707 scopus 로고    scopus 로고
    • Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach
    • Ecker C, Rocha-Rego V, Johnston P, et al (2010b). Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 49: 44-56.
    • (2010) Neuroimage , vol.49 , pp. 44-56
    • Ecker, C.1    Rocha-Rego, V.2    Johnston, P.3
  • 23
    • 84927713637 scopus 로고    scopus 로고
    • Neuroimaging findings in 41 low-functioning children with autism spectrum disorder: A single-center experience
    • Erbetta A, Bulgheroni S, Contarino V, et al (2013). Neuroimaging findings in 41 low-functioning children with autism spectrum disorder: a single-center experience. J Child Neurol doi:10.1177/0883073813511856.
    • (2013) J Child Neurol
    • Erbetta, A.1    Bulgheroni, S.2    Contarino, V.3
  • 24
    • 38749113910 scopus 로고    scopus 로고
    • Spatial patterns of brain atrophy in MCI patients, identified via highdimensional pattern classification, predict subsequent cognitive decline
    • Fan Y, Batmanghelich N, Clark CM, et al (2008). Spatial patterns of brain atrophy in MCI patients, identified via highdimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39: 1731-1743.
    • (2008) Neuroimage , vol.39 , pp. 1731-1743
    • Fan, Y.1    Batmanghelich, N.2    Clark, C.M.3
  • 25
    • 84872405500 scopus 로고    scopus 로고
    • Optimal outcome in individuals with a history of autism
    • Fein D, Barton M, Eigsti IM, et al (2013). Optimal outcome in individuals with a history of autism. J Child Psychol Psychiatry 54: 195-205.
    • (2013) J Child Psychol Psychiatry , vol.54 , pp. 195-205
    • Fein, D.1    Barton, M.2    Eigsti, I.M.3
  • 26
    • 0033837083 scopus 로고    scopus 로고
    • Practice parameter: Screening and diagnosis of autism: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society
    • Filipek PA, Accardo PJ, Ashwal S, et al (2000). Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology 55: 468-479.
    • (2000) Neurology , vol.55 , pp. 468-479
    • Filipek, P.A.1    Accardo, P.J.2    Ashwal, S.3
  • 28
    • 84874683722 scopus 로고    scopus 로고
    • The costs of autism
    • In: Moldin SO, Rubenstein JLR, Boca Raton, FL, Taylor and Francis Group
    • Ganz ML (2006). The costs of autism. In: Moldin SO, Rubenstein JLR (Eds) Understanding Autism: From Basic Neuroscience to Treatment. Boca Raton, FL, Taylor and Francis Group.
    • (2006) Understanding Autism: From Basic Neuroscience to Treatment
    • Ganz, M.L.1
  • 29
    • 84878597407 scopus 로고    scopus 로고
    • DSM-5 and autism spectrum disorders (ASDs): An opportunity for identifying ASD subtypes
    • Grzadzinski R, Huerta M, Lord C (2013). DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol Autism 4: 12.
    • (2013) Mol Autism , vol.4 , pp. 12
    • Grzadzinski, R.1    Huerta, M.2    Lord, C.3
  • 30
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 31
    • 79955601366 scopus 로고    scopus 로고
    • Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years
    • Hazlett HC, Poe MD, Gerig G, et al (2011). Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 68: 467-476.
    • (2011) Arch Gen Psychiatry , vol.68 , pp. 467-476
    • Hazlett, H.C.1    Poe, M.D.2    Gerig, G.3
  • 32
    • 0037408267 scopus 로고    scopus 로고
    • Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys
    • Herbert MR, Ziegler DA, Deutsch CK, et al (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126: 1182-1192.
    • (2003) Brain , vol.126 , pp. 1182-1192
    • Herbert, M.R.1    Ziegler, D.A.2    Deutsch, C.K.3
  • 33
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
    • Hinrichs C, Singh V, Xu G, et al (2011). Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55: 574-589.
    • (2011) Neuroimage , vol.55 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3
  • 34
    • 79959758552 scopus 로고    scopus 로고
    • Diffusion based abnormality markers of pathology: Toward learned diagnostic prediction of ASD
    • Ingalhalikar M, Parker D, Bloy L, et al (2011). Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. Neuroimage 57: 918-927.
    • (2011) Neuroimage , vol.57 , pp. 918-927
    • Ingalhalikar, M.1    Parker, D.2    Bloy, L.3
  • 36
    • 84893844183 scopus 로고    scopus 로고
    • Disentangling the heterogeneity of autism spectrum disorder through genetic findings
    • Jeste SS, Geschwind DH (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 10: 74-81.
    • (2014) Nat Rev Neurol , vol.10 , pp. 74-81
    • Jeste, S.S.1    Geschwind, D.H.2
  • 37
    • 77952298475 scopus 로고    scopus 로고
    • Predictive models of autism spectrum disorder based on brain regional cortical thickness
    • Jiao Y, Chen R, Ke X, et al (2010). Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 50: 589-599.
    • (2010) Neuroimage , vol.50 , pp. 589-599
    • Jiao, Y.1    Chen, R.2    Ke, X.3
  • 38
    • 70349856176 scopus 로고    scopus 로고
    • Diagnostic change and the increased prevalence of autism
    • King M, Bearman P (2009). Diagnostic change and the increased prevalence of autism. Int J Epidemiol 38: 1224-1234.
    • (2009) Int J Epidemiol , vol.38 , pp. 1224-1234
    • King, M.1    Bearman, P.2
  • 39
    • 39749191312 scopus 로고    scopus 로고
    • Automatic classification of MR scans in Alzheimer’s disease
    • Klöppel S, Stonnington CM, Chu C, et al (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain 131: 681-689.
    • (2008) Brain , vol.131 , pp. 681-689
    • Klöppel, S.1    Stonnington, C.M.2    Chu, C.3
  • 40
    • 79954990666 scopus 로고    scopus 로고
    • Introduction to machine learning for brain imaging
    • Lemm S, Blankertz B, Dickhaus T et al (2011). Introduction to machine learning for brain imaging. Neuroimage 56: 387-399.
    • (2011) Neuroimage , vol.56 , pp. 387-399
    • Lemm, S.1    Blankertz, B.2    Dickhaus, T.3
  • 41
    • 77951432260 scopus 로고    scopus 로고
    • Social influence and the autism epidemic
    • Liu KY, King M, Bearman PS (2010). Social influence and the autism epidemic. AJS 115: 1387-1434.
    • (2010) AJS , vol.115 , pp. 1387-1434
    • Liu, K.Y.1    King, M.2    Bearman, P.S.3
  • 42
    • 0033802632 scopus 로고    scopus 로고
    • The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism
    • Lord C, Risi S, Lambrecht L, et al (2000). The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30: 205-223.
    • (2000) J Autism Dev Disord , vol.30 , pp. 205-223
    • Lord, C.1    Risi, S.2    Lambrecht, L.3
  • 43
    • 0027997172 scopus 로고
    • Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders
    • Lord C, Rutter M, Le Couteur A (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659-685.
    • (1994) J Autism Dev Disord , vol.24 , pp. 659-685
    • Lord, C.1    Rutter, M.2    Le Couteur, A.3
  • 44
    • 84928096240 scopus 로고    scopus 로고
    • Receiver operating characteristic analysis: A tool for the quantitative evaluation of observer performance and imaging systems
    • Metz CE (2006). Receiver operating characteristic analysis: a tool for the quantitative evaluation of observer performance and imaging systems. J Am Coll Radiol 3: 413-422.
    • (2006) J am Coll Radiol , vol.3 , pp. 413-422
    • Metz, C.E.1
  • 45
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data
    • Mourão-Miranda J, Bokde AL, Born C, et al (2005). Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. Neuroimage 28: 980-995.
    • (2005) Neuroimage , vol.28 , pp. 980-995
    • Mourão-Miranda, J.1    Bokde, A.L.2    Born, C.3
  • 46
    • 34248569902 scopus 로고    scopus 로고
    • Quantitative temporal lobe differences: Autism distinguished from controls using classification and regression tree analysis
    • Neeley ES, Bigler ED, Krasny L, et al (2007). Quantitative temporal lobe differences: autism distinguished from controls using classification and regression tree analysis. Brain Dev 29: 389-399.
    • (2007) Brain Dev , vol.29 , pp. 389-399
    • Neeley, E.S.1    Bigler, E.D.2    Krasny, L.3
  • 47
    • 84055224143 scopus 로고    scopus 로고
    • Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders
    • Nordahl CW, Lange N, Li DD, et al (2011). Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proc Natl Acad Sci U S A 108: 20195-20200.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 20195-20200
    • Nordahl, C.W.1    Lange, N.2    Li, D.D.3
  • 48
    • 54749127474 scopus 로고    scopus 로고
    • Brief report: Methods for acquiring structural MRI data in very young children with autism without the use of sedation
    • Nordahl CW, Simon TJ, Zierhut C, et al (2008). Brief report: methods for acquiring structural MRI data in very young children with autism without the use of sedation. J Autism Dev Disord 38: 1581-1590.
    • (2008) J Autism Dev Disord , vol.38 , pp. 1581-1590
    • Nordahl, C.W.1    Simon, T.J.2    Zierhut, C.3
  • 49
    • 84857000430 scopus 로고    scopus 로고
    • Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
    • Orrù G, Pettersson-Yeo W, Marquand AF, et al (2012). Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36: 1140-1152.
    • (2012) Neurosci Biobehav Rev , vol.36 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3
  • 50
    • 17344373160 scopus 로고    scopus 로고
    • Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder
    • Palmen SJ, Hulshoff Pol HE, Kemner C, et al (2005). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychol Med 35: 561-570.
    • (2005) Psychol Med , vol.35 , pp. 561-570
    • Palmen, S.J.1    Hulshoff Pol, H.E.2    Kemner, C.3
  • 51
    • 84859108582 scopus 로고    scopus 로고
    • Long-term cognitive and behavioral therapies, combined with augmentative communication, are related to uncinate fasciculus integrity in autism
    • Pardini M, Elia M, Garaci FG, et al (2012). Long-term cognitive and behavioral therapies, combined with augmentative communication, are related to uncinate fasciculus integrity in autism. J Autism Dev Disord 42: 585-592.
    • (2012) J Autism Dev Disord , vol.42 , pp. 585-592
    • Pardini, M.1    Elia, M.2    Garaci, F.G.3
  • 52
    • 79952314339 scopus 로고    scopus 로고
    • Early functional brain development in autism and the promise of sleep fMRI
    • Pierce K (2011). Early functional brain development in autism and the promise of sleep fMRI. Brain Res 1380: 162-174.
    • (2011) Brain Res , vol.1380 , pp. 162-174
    • Pierce, K.1
  • 53
    • 35448937928 scopus 로고    scopus 로고
    • Courchesne E (2007). fMRI during natural sleep as a method to study brain function during early childhood
    • Redcay E, Kennedy DP, Courchesne E (2007). fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage 38: 696-707.
    • Neuroimage , vol.38 , pp. 696-707
    • Redcay, E.1    Kennedy, D.P.2
  • 54
    • 84886933057 scopus 로고    scopus 로고
    • Brain investigation and brain conceptualization
    • Redolfi A, Bosco P, Manset D, et al (2013). Brain investigation and brain conceptualization. Funct Neurol 28: 175-190.
    • (2013) Funct Neurol , vol.28 , pp. 175-190
    • Redolfi, A.1    Bosco, P.2    Manset, D.3
  • 55
    • 75249107585 scopus 로고    scopus 로고
    • Grid infrastructures for computational neuroscience: The neuGRID example
    • Redolfi A, McClatchey R, Anjum A, et al (2009). Grid infrastructures for computational neuroscience: the neuGRID example. Future Neurology 4: 703-722.
    • (2009) Future Neurology , vol.4 , pp. 703-722
    • Redolfi, A.1    McClatchey, R.2    Anjum, A.3
  • 56
    • 84937073920 scopus 로고    scopus 로고
    • Predictive models based on Support Vector Machines: Whole-brain versus regional analysis of structural MRI in the Alzheimer’s disease
    • Retico A, Bosco P, Cerello P, et al (2014). Predictive models based on Support Vector Machines: whole-brain versus regional analysis of structural MRI in the Alzheimer’s disease. J Neuroimaging doi: 10.1111/jon.12163
    • (2014) J Neuroimaging
    • Retico, A.1    Bosco, P.2    Cerello, P.3
  • 57
    • 84874438332 scopus 로고    scopus 로고
    • Inter-regional cortical thickness correlations are associated with autistic symptoms: A machine-learning approach
    • Sato JR, Hoexter MQ, Oliveira PP Jr, et al (2013). Inter-regional cortical thickness correlations are associated with autistic symptoms: a machine-learning approach. J Psychiatr Res 47: 453-459.
    • (2013) J Psychiatr Res , vol.47 , pp. 453-459
    • Sato, J.R.1    Hoexter, M.Q.2    Oliveira, P.P.3
  • 58
    • 77949826586 scopus 로고    scopus 로고
    • Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism
    • Schumann CM, Bloss CS, Barnes CC, et al (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 30:4419-4427.
    • (2010) J Neurosci , vol.30 , pp. 4419-4427
    • Schumann, C.M.1    Bloss, C.S.2    Barnes, C.C.3
  • 59
    • 58849098790 scopus 로고    scopus 로고
    • Cortical surface thickness as a classifier: Boosting for autism classification
    • Singh V, Mukherjee L, Chung MK (2008). Cortical surface thickness as a classifier: boosting for autism classification. Med Image Comput Comput Assist Interv 11: 999-1007.
    • (2008) Med Image Comput Comput Assist Interv , vol.11 , pp. 999-1007
    • Singh, V.1    Mukherjee, L.2    Chung, M.K.3
  • 60
    • 0037162380 scopus 로고    scopus 로고
    • Brain structural abnormalities in young children with autism spectrum disorder
    • Sparks BF, Friedman SD, Friedman SD, et al (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59: 184-192.
    • (2002) Neurology , vol.59 , pp. 184-192
    • Sparks, B.F.1    Friedman, S.D.2    Friedman, S.D.3
  • 62
    • 80053952154 scopus 로고    scopus 로고
    • Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism
    • Uddin LQ, Menon V, Young CB, et al (2011). Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol Psychiatry 70: 833-841.
    • (2011) Biol Psychiatry , vol.70 , pp. 833-841
    • Uddin, L.Q.1    Menon, V.2    Young, C.B.3
  • 64
    • 33748962569 scopus 로고    scopus 로고
    • Agreement among four diagnostic instruments for autism spectrum disorders in toddlers
    • Ventola PE, Kleinman J, Pandey J, et al (2006). Agreement among four diagnostic instruments for autism spectrum disorders in toddlers. J Autism Dev Disord 36: 839-847.
    • (2006) J Autism Dev Disord , vol.36 , pp. 839-847
    • Ventola, P.E.1    Kleinman, J.2    Pandey, J.3
  • 65
    • 77952909655 scopus 로고    scopus 로고
    • Behavioral treatments in autism spectrum disorder: What do we know?
    • Vismara LA, Rogers SJ (2010). Behavioral treatments in autism spectrum disorder: what do we know? Annu Rev Clin Psychol 6: 447-468.
    • (2010) Annu Rev Clin Psychol , vol.6 , pp. 447-468
    • Vismara, L.A.1    Rogers, S.J.2
  • 66
    • 84872281482 scopus 로고    scopus 로고
    • Neural mechanisms of improvements in social motivation after pivotal response treatment: Two case studies
    • Voos AC, Pelphrey KA, Tirrell J, et al (2013). Neural mechanisms of improvements in social motivation after pivotal response treatment: two case studies. J Autism Dev Disord 43: 1-10.
    • (2013) J Autism Dev Disord , vol.43 , pp. 1-10
    • Voos, A.C.1    Pelphrey, K.A.2    Tirrell, J.3
  • 67
    • 80053003849 scopus 로고    scopus 로고
    • In search of biomarkers for autism: Scientific, social and ethical challenges
    • Walsh P, Elsabbagh M, Bolton P, et al (2011). In search of biomarkers for autism: scientific, social and ethical challenges. Nat Rev Neurosci 12: 603-612.
    • (2011) Nat Rev Neurosci , vol.12 , pp. 603-612
    • Walsh, P.1    Elsabbagh, M.2    Bolton, P.3
  • 68
    • 84856414697 scopus 로고    scopus 로고
    • The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception
    • Weiner MW, Veitch DP, Aisen PS, et al (2012). The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 8 (1): S1-68.
    • (2012) Alzheimers Dement , vol.8 , Issue.1 , pp. S1-68
    • Weiner, M.W.1    Veitch, D.P.2    Aisen, P.S.3
  • 69
    • 84861660149 scopus 로고    scopus 로고
    • Differences in white matter fiber tract development present from 6 to 24 months in infants with autism
    • Wolff JJ, Gu H, Gerig G, et al (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatry 169: 589-600.
    • (2012) Am J Psychiatry , vol.169 , pp. 589-600
    • Wolff, J.J.1    Gu, H.2    Gerig, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.