메뉴 건너뛰기




Volumn 25, Issue 4, 2015, Pages 552-563

Predictive Models Based on Support Vector Machines: Whole-Brain versus Regional Analysis of Structural MRI in the Alzheimer's Disease

Author keywords

Alzheimer's disease; Classification; Mild cognitive impairment; MRI; Support vector machines

Indexed keywords

ALZHEIMER DISEASE; ARTICLE; DIAGNOSTIC ACCURACY; GRAY MATTER; HUMAN; IMAGE ANALYSIS; MAJOR CLINICAL STUDY; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; RECEIVER OPERATING CHARACTERISTIC; REDUCTION; SUPPORT VECTOR MACHINE; AGED; BIOLOGICAL MODEL; BRAIN; COMPUTER SIMULATION; CONNECTOME; FEMALE; MALE; NERVE CELL NETWORK; PATHOLOGY; PROCEDURES; REPRODUCIBILITY; SENSITIVITY AND SPECIFICITY; STATISTICAL MODEL;

EID: 84937073920     PISSN: 10512284     EISSN: 15526569     Source Type: Journal    
DOI: 10.1111/jon.12163     Document Type: Article
Times cited : (41)

References (49)
  • 1
    • 0033549101 scopus 로고    scopus 로고
    • The search for diagnostic and progression markers in AD: so near but still too far?
    • Black SE. The search for diagnostic and progression markers in AD: so near but still too far? Neurology 1999;52:1533-1534.
    • (1999) Neurology , vol.52 , pp. 1533-1534
    • Black, S.E.1
  • 2
    • 0026759348 scopus 로고
    • Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates
    • Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiat 1992;55:967-972.
    • (1992) J Neurol Neurosurg Psychiat , vol.55 , pp. 967-972
    • Scheltens, P.1    Leys, D.2    Barkhof, F.3
  • 3
    • 5644227314 scopus 로고    scopus 로고
    • Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease
    • Karas GB, Scheltens P, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage 2004;23(2):708-716.
    • (2004) Neuroimage , vol.23 , Issue.2 , pp. 708-716
    • Karas, G.B.1    Scheltens, P.2
  • 4
    • 49049112266 scopus 로고    scopus 로고
    • Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients
    • Sluimer JD, van der Flier WM, Karas GB, et al. Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients. Radiology 2008;248(2):590-598.
    • (2008) Radiology , vol.248 , Issue.2 , pp. 590-598
    • Sluimer, J.D.1    van der Flier, W.M.2    Karas, G.B.3
  • 5
    • 71449099306 scopus 로고    scopus 로고
    • Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease
    • Sluimer JD, van der Flier WM, Karas GB, et al. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease. Eur Radiol 2009;19(12):2826-2833.
    • (2009) Eur Radiol , vol.19 , Issue.12 , pp. 2826-2833
    • Sluimer, J.D.1    van der Flier, W.M.2    Karas, G.B.3
  • 6
    • 77953998854 scopus 로고    scopus 로고
    • Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort
    • Risacher SL, Shen L, West JD, et al. Alzheimer's Disease Neuroimaging Initiative (ADNI). Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiol Aging 2010;31(8):1401-1418.
    • (2010) Neurobiol Aging , vol.31 , Issue.8 , pp. 1401-1418
    • Risacher, S.L.1    Shen, L.2    West, J.D.3
  • 7
    • 84964761792 scopus 로고    scopus 로고
    • Alzheimer's disease markers from structural MRI and FDG-PET brain images
    • Chincarini A, Bosco P, Gemme G, et al. Alzheimer's disease markers from structural MRI and FDG-PET brain images. Eur Phys J Plus 2012;127(11):135.
    • (2012) Eur Phys J Plus , vol.127 , Issue.11 , pp. 135
    • Chincarini, A.1    Bosco, P.2    Gemme, G.3
  • 8
    • 84861198255 scopus 로고    scopus 로고
    • Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance
    • Ewers M, Walsh C, Trojanowski JQ. Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging 2012;33(7):1203-1214.
    • (2012) Neurobiol Aging , vol.33 , Issue.7 , pp. 1203-1214
    • Ewers, M.1    Walsh, C.2    Trojanowski, J.Q.3
  • 9
    • 84873361594 scopus 로고    scopus 로고
    • Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers
    • Shaffer JL, Petrella JR, et al. Alzheimer's Disease Neuroimaging Initiative. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 2013;266(2):583-591.
    • (2013) Radiology , vol.266 , Issue.2 , pp. 583-591
    • Shaffer, J.L.1    Petrella, J.R.2
  • 10
    • 84860734393 scopus 로고    scopus 로고
    • Diagnostic neuroimaging across diseases
    • Klöppel S, Abdulkadir A, et al. Diagnostic neuroimaging across diseases. Neuroimage 201261(2):457-463.
    • (2012) Neuroimage , vol.61 , Issue.2 , pp. 457-463
    • Klöppel, S.1    Abdulkadir, A.2
  • 11
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
    • Orrù G, Pettersson-Yeo W, Marquand AF, et al. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 2012;36(4):1140-1152.
    • (2012) Neurosci Biobehav Rev , vol.36 , Issue.4 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3
  • 12
    • 1642574430 scopus 로고    scopus 로고
    • Morphological classification of brains via high-dimensional shape transformations and machine learning methods
    • Lao Z, Shen D, Xue Z, Karacali B, et al. Morphological classification of brains via high-dimensional shape transformations and machine learning methods. Neuroimage 2004;21(1):46-57.
    • (2004) Neuroimage , vol.21 , Issue.1 , pp. 46-57
    • Lao, Z.1    Shen, D.2    Xue, Z.3    Karacali, B.4
  • 13
    • 0035195760 scopus 로고    scopus 로고
    • Current concepts in mild cognitive impairment
    • Petersen C. Current concepts in mild cognitive impairment. Arch Neurol 2001;58(12):1985-1992.
    • (2001) Arch Neurol , vol.58 , Issue.12 , pp. 1985-1992
    • Petersen, C.1
  • 14
    • 34548795886 scopus 로고    scopus 로고
    • Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment
    • Teipel SJ, Born C, Ewers M, et al. Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment. Neuroimage 2007;38(1):13-24.
    • (2007) Neuroimage , vol.38 , Issue.1 , pp. 13-24
    • Teipel, S.J.1    Born, C.2    Ewers, M.3
  • 15
    • 84855418467 scopus 로고    scopus 로고
    • Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
    • Cho Y, Seong JK, Jeong Y, et al. Alzheimer's Disease Neuroimaging Initiative. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 2012;59(3):2217-2230.
    • (2012) Neuroimage , vol.59 , Issue.3 , pp. 2217-2230
    • Cho, Y.1    Seong, J.K.2    Jeong, Y.3
  • 16
    • 39749191312 scopus 로고    scopus 로고
    • Automatic classification of MR scans in Alzheimer's disease
    • Klöppel S, Stonnington CM, Chu C, et al. Automatic classification of MR scans in Alzheimer's disease. Brain 2008;131:681-689.
    • (2008) Brain , vol.131 , pp. 681-689
    • Klöppel, S.1    Stonnington, C.M.2    Chu, C.3
  • 17
    • 38749113910 scopus 로고    scopus 로고
    • Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
    • Fan Y, Batmanghelich N, Clark CM, et al. Alzheimer's Disease Neuroimaging Initiative. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 2008;39(4):1731-1743.
    • (2008) Neuroimage , vol.39 , Issue.4 , pp. 1731-1743
    • Fan, Y.1    Batmanghelich, N.2    Clark, C.M.3
  • 18
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
    • Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 2009;44(4):1415-1422.
    • (2009) Neuroimage , vol.44 , Issue.4 , pp. 1415-1422
    • Misra, C.1    Fan, Y.2    Davatzikos, C.3
  • 19
    • 80051784240 scopus 로고    scopus 로고
    • Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease
    • Chincarini A, Bosco P, Calvini P. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Neuroimage 2011;58(2):469-480.
    • (2011) Neuroimage , vol.58 , Issue.2 , pp. 469-480
    • Chincarini, A.1    Bosco, P.2    Calvini, P.3
  • 20
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
    • Cuingnet R, Gerardin E, Tessieras J, et al. Alzheimer's Disease Neuroimaging Initiative. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 2011;56(2):766-781.
    • (2011) Neuroimage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3
  • 21
    • 84862776712 scopus 로고    scopus 로고
    • Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • Chu C, Hsu AL, Chou KH, et al. Alzheimer's Disease Neuroimaging Initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 2012;60(1):59-70.
    • (2012) Neuroimage , vol.60 , Issue.1 , pp. 59-70
    • Chu, C.1    Hsu, A.L.2    Chou, K.H.3
  • 22
    • 84993994674 scopus 로고    scopus 로고
    • High dimensional classification of structural MRI Alzheimer's disease data based on large scale regularization
    • Casanova R, Whitlow CT, Wagner B, et al. High dimensional classification of structural MRI Alzheimer's disease data based on large scale regularization. Front Neuroinform 2011;5:22.
    • (2011) Front Neuroinform , vol.5 , pp. 22
    • Casanova, R.1    Whitlow, C.T.2    Wagner, B.3
  • 23
    • 79960638062 scopus 로고    scopus 로고
    • Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors
    • Cui Y, Liu B, Luo S, et al. Alzheimer's Disease Neuroimaging Initiative. Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors. PLoS One 2011;6(7):e21896.
    • (2011) PLoS One , vol.6 , Issue.7 , pp. e21896
    • Cui, Y.1    Liu, B.2    Luo, S.3
  • 24
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
    • Hinrichs C, Singh V, Xu G, et al. Alzheimers Disease Neuroimaging Initiative. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011;55(2):574-589.
    • (2011) Neuroimage , vol.55 , Issue.2 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3
  • 25
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer's disease
    • Liu M, Zhang D, Shen D. Alzheimer's Disease Neuroimaging Initiative. Ensemble sparse classification of Alzheimer's disease. Neuroimage 2012;60(2):1106-1116.
    • (2012) Neuroimage , vol.60 , Issue.2 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 26
    • 80053654021 scopus 로고    scopus 로고
    • Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
    • Davatzikos C, Bhatt P, Shaw LM, et al. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 2011;32(12):2322.e19-2322.e27.
    • (2011) Neurobiol Aging , vol.32 , Issue.12
    • Davatzikos, C.1    Bhatt, P.2    Shaw, L.M.3
  • 27
    • 84856414697 scopus 로고    scopus 로고
    • The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception
    • Weiner MW, Veitch DP, Aisen PS. The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 2012;8(1 Suppl):S1-S68.
    • (2012) Alzheimers Dement , vol.8 , Issue.1 , pp. S1-S68
    • Weiner, M.W.1    Veitch, D.P.2    Aisen, P.S.3
  • 28
    • 84884125608 scopus 로고    scopus 로고
    • How early can we predict Alzheimer's disease using computational anatomy
    • Adaszewski S, Dukart J, Kherif F, et al. Alzheimer's Disease Neuroimaging Initiative. How early can we predict Alzheimer's disease using computational anatomy? Neurobiol Aging 2013;34(12):2815-2826.
    • (2013) Neurobiol Aging , vol.34 , Issue.12 , pp. 2815-2826
    • Adaszewski, S.1    Dukart, J.2    Kherif, F.3
  • 29
    • 37849038012 scopus 로고    scopus 로고
    • Construction of a 3D probabilistic atlas of human cortical structures
    • Shattuck DW, Mirza M, Adisetiyo V, et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 2008;39:1064-1080.
    • (2008) Neuroimage , vol.39 , pp. 1064-1080
    • Shattuck, D.W.1    Mirza, M.2    Adisetiyo, V.3
  • 30
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Lear 2002;46:389-422.
    • (2002) Machine Lear , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 32
    • 0029043654 scopus 로고    scopus 로고
    • A probabilistic atlas of the human brain: theory and rationale for its development
    • Mazziotta JC, Toga AW, Evans A, et al. A probabilistic atlas of the human brain: theory and rationale for its development. Neuroimage 1996;2:89-101.
    • (1996) Neuroimage , vol.2 , pp. 89-101
    • Mazziotta, J.C.1    Toga, A.W.2    Evans, A.3
  • 33
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000;11(6 Pt 1):805-821.
    • (2000) Neuroimage , vol.11 , Issue.6 , pp. 805-821
    • Ashburner, J.1    Friston, K.J.2
  • 34
    • 34548832230 scopus 로고    scopus 로고
    • A fast diffeomorphic image registration algorithm
    • Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007;38(1):95-113.
    • (2007) Neuroimage , vol.38 , Issue.1 , pp. 95-113
    • Ashburner, J.1
  • 35
    • 56349088359 scopus 로고    scopus 로고
    • A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe
    • Yassa MA, Stark CE. A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. Neuroimage 2009;44(2):319-327.
    • (2009) Neuroimage , vol.44 , Issue.2 , pp. 319-327
    • Yassa, M.A.1    Stark, C.E.2
  • 36
    • 20444501009 scopus 로고    scopus 로고
    • Unified segmentation
    • Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26(3):839-851.
    • (2005) Neuroimage , vol.26 , Issue.3 , pp. 839-851
    • Ashburner, J.1    Friston, K.J.2
  • 37
    • 70349964707 scopus 로고    scopus 로고
    • Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach
    • Ecker C, Rocha-Rego V, Johnston P, et al. MRC AIMS Consortium. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 2010;49(1):44-56.
    • (2010) Neuroimage , vol.49 , Issue.1 , pp. 44-56
    • Ecker, C.1    Rocha-Rego, V.2    Johnston, P.3
  • 39
    • 0003798642 scopus 로고    scopus 로고
    • In: B Schölkopf, C Burges and A. Smola, eds. Cambridge, MA: MIT Press
    • Joachims T. Making Large-Scale SVM Learning Practical. In: B Schölkopf, C Burges and A. Smola, eds. Cambridge, MA: MIT Press, 1999.
    • (1999) Making Large-Scale SVM Learning Practical
    • Joachims, T.1
  • 41
    • 84928096240 scopus 로고    scopus 로고
    • Receiver operating characteristic analysis: a tool for the quantitative evaluation of observer performance and imaging systems
    • Metz CE. Receiver operating characteristic analysis: a tool for the quantitative evaluation of observer performance and imaging systems. J Am Coll Radiol 2006;3(6):413-422.
    • (2006) J Am Coll Radiol , vol.3 , Issue.6 , pp. 413-422
    • Metz, C.E.1
  • 42
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns
    • De Martino F, Valente G, Staeren N, et al. Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns. Neuroimage 2008;43(1):44-58.
    • (2008) Neuroimage , vol.43 , Issue.1 , pp. 44-58
    • De Martino, F.1    Valente, G.2    Staeren, N.3
  • 45
    • 0030870823 scopus 로고    scopus 로고
    • Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method
    • Lancaster JL, Rainey LH, Summerlin CS, et al. Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 1997;5:238-242.
    • (1997) Hum Brain Mapp , vol.5 , pp. 238-242
    • Lancaster, J.L.1    Rainey, L.H.2    Summerlin, C.S.3
  • 46
    • 0033922981 scopus 로고    scopus 로고
    • Automated talairach atlas labels for functional brain mapping
    • Lancaster JL, Woldorff MG, Parsons LM, et al. Automated talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000;10(3):120-131.
    • (2000) Hum Brain Mapp , vol.10 , Issue.3 , pp. 120-131
    • Lancaster, J.L.1    Woldorff, M.G.2    Parsons, L.M.3
  • 47
    • 77952310047 scopus 로고    scopus 로고
    • Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations
    • Evans MC, Barnes J, Nielsen C, et al. Alzheimer's Disease Neuroimaging Initiative. Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations. Eur Radiol 2010;20(3):674-682.
    • (2010) Eur Radiol , vol.20 , Issue.3 , pp. 674-682
    • Evans, M.C.1    Barnes, J.2    Nielsen, C.3
  • 48
    • 77952888499 scopus 로고    scopus 로고
    • Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
    • Stonnington CM, Chu C, Klöppel S, et al. Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. Neuroimage 2010;51(4):1405-1413.
    • (2010) Neuroimage , vol.51 , Issue.4 , pp. 1405-1413
    • Stonnington, C.M.1    Chu, C.2    Klöppel, S.3
  • 49
    • 68249090572 scopus 로고    scopus 로고
    • MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations
    • Vemuri P, Wiste HJ, Weigand SD, et al. Alzheimer's Disease Neuroimaging Initiative. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 2009;73(4):287-293.
    • (2009) Neurology , vol.73 , Issue.4 , pp. 287-293
    • Vemuri, P.1    Wiste, H.J.2    Weigand, S.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.