-
1
-
-
0034283229
-
Intraspecies variation in bacterial genomes: the need for a species genome concept
-
Lan R., Reeves P.R. Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol. 2000, 8:396-401.
-
(2000)
Trends Microbiol.
, vol.8
, pp. 396-401
-
-
Lan, R.1
Reeves, P.R.2
-
2
-
-
33745094990
-
The genome of Rhizobium leguminosarum has recognizable core and accessory components
-
Young J.P.W., et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 2006, 7:R34.
-
(2006)
Genome Biol.
, vol.7
, pp. R34
-
-
Young, J.P.W.1
-
3
-
-
42949142583
-
The emergence and fate of horizontally acquired genes in Escherichia coli
-
van Passel M.W., et al. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput. Biol. 2008, 4:e1000059.
-
(2008)
PLoS Comput. Biol.
, vol.4
, pp. e1000059
-
-
van Passel, M.W.1
-
4
-
-
84861847839
-
Population genomics: how bacterial species form and why they don't exist
-
Doolittle W.F. Population genomics: how bacterial species form and why they don't exist. Curr. Biol. 2012, 22:R451-R453.
-
(2012)
Curr. Biol.
, vol.22
, pp. R451-R453
-
-
Doolittle, W.F.1
-
5
-
-
70449503880
-
The fundamental units, processes and patterns of evolution, and the tree of life conundrum
-
Koonin E.V., Wolf Y.I. The fundamental units, processes and patterns of evolution, and the tree of life conundrum. Biol. Direct 2009, 4:33.
-
(2009)
Biol. Direct
, vol.4
, pp. 33
-
-
Koonin, E.V.1
Wolf, Y.I.2
-
6
-
-
25444524604
-
Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome"
-
Tettelin H., et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13950-13955.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 13950-13955
-
-
Tettelin, H.1
-
7
-
-
78651281319
-
Genomic fluidity: an integrative view of gene diversity within microbial populations
-
Kislyuk A.O., et al. Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genomics 2011, 12:32.
-
(2011)
BMC Genomics
, vol.12
, pp. 32
-
-
Kislyuk, A.O.1
-
8
-
-
57549115252
-
The fate of new bacterial genes
-
Kuo C.H., Ochman H. The fate of new bacterial genes. FEMS Microbiol. Rev. 2009, 33:38-43.
-
(2009)
FEMS Microbiol. Rev.
, vol.33
, pp. 38-43
-
-
Kuo, C.H.1
Ochman, H.2
-
9
-
-
55049138544
-
Evolutionary patterns in prokaryotic genomes
-
Rocha E.P. Evolutionary patterns in prokaryotic genomes. Curr. Opin. Microbiol. 2008, 11:454-460.
-
(2008)
Curr. Opin. Microbiol.
, vol.11
, pp. 454-460
-
-
Rocha, E.P.1
-
10
-
-
79960961566
-
Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches
-
Wiedenbeck J., Cohan F.M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 2011, 35:957-976.
-
(2011)
FEMS Microbiol. Rev.
, vol.35
, pp. 957-976
-
-
Wiedenbeck, J.1
Cohan, F.M.2
-
11
-
-
83055186603
-
Ecology drives a global network of gene exchange connecting the human microbiome
-
Smillie C.S., et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011, 480:241-244.
-
(2011)
Nature
, vol.480
, pp. 241-244
-
-
Smillie, C.S.1
-
12
-
-
78751527447
-
Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths
-
Kloesges T., et al. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol. Biol. Evol. 2011, 28:1057-1074.
-
(2011)
Mol. Biol. Evol.
, vol.28
, pp. 1057-1074
-
-
Kloesges, T.1
-
13
-
-
77957355684
-
High frequency of horizontal gene transfer in the oceans
-
McDaniel L.D., et al. High frequency of horizontal gene transfer in the oceans. Science 2010, 330:50.
-
(2010)
Science
, vol.330
, pp. 50
-
-
McDaniel, L.D.1
-
14
-
-
79851505378
-
Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes
-
Treangen T.J., Rocha E.P. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 2011, 7:e1001284.
-
(2011)
PLoS Genet.
, vol.7
, pp. e1001284
-
-
Treangen, T.J.1
Rocha, E.P.2
-
15
-
-
48249151749
-
Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution
-
Dagan T., et al. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:10039-10044.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 10039-10044
-
-
Dagan, T.1
-
16
-
-
28444475529
-
Adaptive evolution of bacterial metabolic networks by horizontal gene transfer
-
Pal C., et al. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 2005, 37:1372-1375.
-
(2005)
Nat. Genet.
, vol.37
, pp. 1372-1375
-
-
Pal, C.1
-
17
-
-
84875273263
-
Horizontal gene transfer and the evolution of bacterial and archaeal population structure
-
Polz M.F., et al. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013, 29:170-175.
-
(2013)
Trends Genet.
, vol.29
, pp. 170-175
-
-
Polz, M.F.1
-
18
-
-
33745172155
-
The fate of laterally transferred genes: life in the fast lane to adaptation or death
-
Hao W., Golding G.B. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res. 2006, 16:636-643.
-
(2006)
Genome Res.
, vol.16
, pp. 636-643
-
-
Hao, W.1
Golding, G.B.2
-
19
-
-
33750965783
-
Gene gain and gene loss in Streptococcus: is it driven by habitat?
-
Marri P.R., et al. Gene gain and gene loss in Streptococcus: is it driven by habitat?. Mol. Biol. Evol. 2006, 23:2379-2391.
-
(2006)
Mol. Biol. Evol.
, vol.23
, pp. 2379-2391
-
-
Marri, P.R.1
-
20
-
-
34248179124
-
The role of laterally transferred genes in adaptive evolution
-
Marri P.R., et al. The role of laterally transferred genes in adaptive evolution. BMC Evol. Biol. 2007, 7:S8.
-
(2007)
BMC Evol. Biol.
, vol.7
, pp. S8
-
-
Marri, P.R.1
-
21
-
-
84964315438
-
The extent of genome flux and its role in the differentiation of bacterial lineages
-
Nowell R.W., et al. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol. Evol. 2014, 6:1514-1529.
-
(2014)
Genome Biol. Evol.
, vol.6
, pp. 1514-1529
-
-
Nowell, R.W.1
-
22
-
-
59249089471
-
Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths
-
Touchon M., et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 2009, 5:e1000344.
-
(2009)
PLoS Genet.
, vol.5
, pp. e1000344
-
-
Touchon, M.1
-
23
-
-
84862290950
-
Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli
-
Didelot X., et al. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics 2012, 13:256.
-
(2012)
BMC Genomics
, vol.13
, pp. 256
-
-
Didelot, X.1
-
24
-
-
78751652407
-
Inferring bacterial genome flux while considering truncated genes
-
Hao W., Golding G.B. Inferring bacterial genome flux while considering truncated genes. Genetics 2010, 186:411-426.
-
(2010)
Genetics
, vol.186
, pp. 411-426
-
-
Hao, W.1
Golding, G.B.2
-
25
-
-
84880712059
-
Exploring the costs of horizontal gene transfer
-
Baltrus D.A. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 2013, 28:489-495.
-
(2013)
Trends Ecol. Evol.
, vol.28
, pp. 489-495
-
-
Baltrus, D.A.1
-
26
-
-
84928402541
-
Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa
-
Published online April 21, 2015
-
Millan A.S., et al. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat. Commun. 2015, Published online April 21, 2015. 10.1038/ncomms7845.
-
(2015)
Nat. Commun.
-
-
Millan, A.S.1
-
27
-
-
0032696759
-
Addiction modules and programmed cell death and antideath in bacterial cultures
-
Engelberg-Kulka H., Glaser G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 1999, 53:43-70.
-
(1999)
Annu. Rev. Microbiol.
, vol.53
, pp. 43-70
-
-
Engelberg-Kulka, H.1
Glaser, G.2
-
28
-
-
84874193830
-
Evaluating evolutionary models of stress-induced mutagenesis in bacteria
-
MacLean R.C., et al. Evaluating evolutionary models of stress-induced mutagenesis in bacteria. Nat. Rev. Genet. 2013, 14:221-227.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 221-227
-
-
MacLean, R.C.1
-
29
-
-
84870180587
-
The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity
-
Westra E.R., et al. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Gen. 2012, 46:311-339.
-
(2012)
Annu. Rev. Gen.
, vol.46
, pp. 311-339
-
-
Westra, E.R.1
-
30
-
-
84868599895
-
Drift-barrier hypothesis and mutation-rate evolution
-
Sung W., et al. Drift-barrier hypothesis and mutation-rate evolution. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18488-18492.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 18488-18492
-
-
Sung, W.1
-
31
-
-
77955090647
-
Evolution of the mutation rate
-
Lynch M. Evolution of the mutation rate. Trends Genet. 2010, 26:345-352.
-
(2010)
Trends Genet.
, vol.26
, pp. 345-352
-
-
Lynch, M.1
-
32
-
-
0031916242
-
Rates of spontaneous mutation
-
Drake J.W., et al. Rates of spontaneous mutation. Genetics 1998, 148:1667-1686.
-
(1998)
Genetics
, vol.148
, pp. 1667-1686
-
-
Drake, J.W.1
-
33
-
-
0029130141
-
Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over?
-
Kondrashov A.S. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over?. J. Theor. Biol. 1995, 175:583-594.
-
(1995)
J. Theor. Biol.
, vol.175
, pp. 583-594
-
-
Kondrashov, A.S.1
-
34
-
-
0034542564
-
The evolution of mutation rates: separating causes from consequences
-
Sniegowski P.D., et al. The evolution of mutation rates: separating causes from consequences. Bioessays 2000, 22:1057-1066.
-
(2000)
Bioessays
, vol.22
, pp. 1057-1066
-
-
Sniegowski, P.D.1
-
35
-
-
84872412041
-
Non-random mutation: The evolution of targeted hypermutation and hypomutation
-
Martincorena I., Luscombe N.M. Non-random mutation: The evolution of targeted hypermutation and hypomutation. Bioessays 2013, 35:123-130.
-
(2013)
Bioessays
, vol.35
, pp. 123-130
-
-
Martincorena, I.1
Luscombe, N.M.2
-
36
-
-
0000549642
-
Natural selection and mutability
-
Leigh E.G. Natural selection and mutability. Am. Nat. 1970, 301-305.
-
(1970)
Am. Nat.
, pp. 301-305
-
-
Leigh, E.G.1
-
37
-
-
84925296085
-
The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach
-
Vogwill T., MacLean R.C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol. Appl. 2015, 8:284-295.
-
(2015)
Evol. Appl.
, vol.8
, pp. 284-295
-
-
Vogwill, T.1
MacLean, R.C.2
-
38
-
-
77951115860
-
Detecting genomic islands using bioinformatics approaches
-
Langille M.G., et al. Detecting genomic islands using bioinformatics approaches. Nat. Rev. Microbiol. 2010, 8:373-382.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 373-382
-
-
Langille, M.G.1
-
39
-
-
79251573217
-
Cryptic prophages help bacteria cope with adverse environments
-
Wang X., et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 2010, 1:147.
-
(2010)
Nat. Commun.
, vol.1
, pp. 147
-
-
Wang, X.1
-
40
-
-
78650740717
-
The advantages and disadvantages of horizontal gene transfer and the emergence of the first species
-
Vogan A.A., Higgs P.G. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol. Direct 2011, 6:1.
-
(2011)
Biol. Direct
, vol.6
, pp. 1
-
-
Vogan, A.A.1
Higgs, P.G.2
-
41
-
-
84876106424
-
Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria
-
Seitz P., Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 2012, 37:336-363.
-
(2012)
FEMS Microbiol. Rev.
, vol.37
, pp. 336-363
-
-
Seitz, P.1
Blokesch, M.2
-
42
-
-
84894093468
-
Bacterial transformation: distribution, shared mechanisms and divergent control
-
Johnston C., et al. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 2014, 12:181-196.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 181-196
-
-
Johnston, C.1
-
43
-
-
66249147580
-
Why do bacteria engage in homologous recombination?
-
Vos M. Why do bacteria engage in homologous recombination?. Trends Microbiol. 2009, 17:226-232.
-
(2009)
Trends Microbiol.
, vol.17
, pp. 226-232
-
-
Vos, M.1
-
44
-
-
0035430787
-
Do bacteria have sex?
-
Redfield R.J. Do bacteria have sex?. Nat. Rev. Genet. 2001, 2:634-639.
-
(2001)
Nat. Rev. Genet.
, vol.2
, pp. 634-639
-
-
Redfield, R.J.1
-
45
-
-
33745624539
-
The rate of adaptive evolution in enteric bacteria
-
Charlesworth J., Eyre-Walker A. The rate of adaptive evolution in enteric bacteria. Mol. Biol. Evol. 2006, 23:1348-1356.
-
(2006)
Mol. Biol. Evol.
, vol.23
, pp. 1348-1356
-
-
Charlesworth, J.1
Eyre-Walker, A.2
-
46
-
-
84893695336
-
Detecting rare gene transfer events in bacterial populations
-
Nielsen K.M., et al. Detecting rare gene transfer events in bacterial populations. Front. Microbiol. 2014, 4:1-12.
-
(2014)
Front. Microbiol.
, vol.4
, pp. 1-12
-
-
Nielsen, K.M.1
-
47
-
-
84868372186
-
An evolutionary link between natural transformation and CRISPR adaptive immunity
-
Jorth P., Whiteley M. An evolutionary link between natural transformation and CRISPR adaptive immunity. Mbio 2012, 3:e00309-e00312.
-
(2012)
Mbio
, vol.3
, pp. e00309-e00312
-
-
Jorth, P.1
Whiteley, M.2
-
48
-
-
70350150370
-
Sexual isolation in Acinetobacter baylyi is locus-specific and varies 10,000-fold over the genome
-
Ray J.L., et al. Sexual isolation in Acinetobacter baylyi is locus-specific and varies 10,000-fold over the genome. Genetics 2009, 182:1165-1181.
-
(2009)
Genetics
, vol.182
, pp. 1165-1181
-
-
Ray, J.L.1
-
49
-
-
33746008173
-
Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella
-
Navarre W.W., et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 2006, 313:236-238.
-
(2006)
Science
, vol.313
, pp. 236-238
-
-
Navarre, W.W.1
-
50
-
-
84864083035
-
The infinitely many genes model for the distributed genome of bacteria
-
Baumdicker F., et al. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 2012, 4:443-456.
-
(2012)
Genome Biol. Evol.
, vol.4
, pp. 443-456
-
-
Baumdicker, F.1
-
51
-
-
84867822025
-
Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome
-
Collins R.E., Higgs P.G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 2012, 29:3413-3425.
-
(2012)
Mol. Biol. Evol.
, vol.29
, pp. 3413-3425
-
-
Collins, R.E.1
Higgs, P.G.2
-
52
-
-
84861893794
-
Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations
-
Tian C.F., et al. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8629-8634.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 8629-8634
-
-
Tian, C.F.1
-
53
-
-
84859499489
-
Population genomics of early events in the ecological differentiation of bacteria
-
Shapiro B.J., et al. Population genomics of early events in the ecological differentiation of bacteria. Science 2012, 336:48-51.
-
(2012)
Science
, vol.336
, pp. 48-51
-
-
Shapiro, B.J.1
-
54
-
-
23944499633
-
Horizontal gene transfer, genome innovation and evolution
-
Gogarten J.P., Townsend J.P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 2005, 3:679-687.
-
(2005)
Nat. Rev. Microbiol.
, vol.3
, pp. 679-687
-
-
Gogarten, J.P.1
Townsend, J.P.2
-
55
-
-
36249021315
-
Genome-wide experimental determination of barriers to horizontal gene transfer
-
Sorek R., et al. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 2007, 318:1449-1452.
-
(2007)
Science
, vol.318
, pp. 1449-1452
-
-
Sorek, R.1
-
56
-
-
84899504332
-
Minor fitness costs in an experimental model of horizontal gene transfer in bacteria
-
Knöppel A., et al. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol. Biol. Evol. 2014, 31:1220-1227.
-
(2014)
Mol. Biol. Evol.
, vol.31
, pp. 1220-1227
-
-
Knöppel, A.1
-
57
-
-
34447546660
-
The distribution of fitness effects of new mutations
-
Eyre-Walker A., Keightley P.D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 2007, 8:610-618.
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 610-618
-
-
Eyre-Walker, A.1
Keightley, P.D.2
-
58
-
-
33644630612
-
Comparisons of dN/dS are time dependent for closely related bacterial genomes
-
Rocha E.P., et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 2005, 239:226-235.
-
(2005)
J. Theor. Biol.
, vol.239
, pp. 226-235
-
-
Rocha, E.P.1
-
59
-
-
24744468387
-
Bacterial genome size reduction by experimental evolution
-
Nilsson A., et al. Bacterial genome size reduction by experimental evolution. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:12112-12116.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 12112-12116
-
-
Nilsson, A.1
-
60
-
-
84864058204
-
Selection-driven gene loss in bacteria
-
Koskiniemi S., et al. Selection-driven gene loss in bacteria. PLoS Genet. 2012, 8:e1002787.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002787
-
-
Koskiniemi, S.1
-
61
-
-
84863668598
-
Repeated, selection-driven genome reduction of accessory genes in experimental populations
-
Lee M-C., Marx C.J. Repeated, selection-driven genome reduction of accessory genes in experimental populations. PLoS Genet. 2012, 8:e1002651.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002651
-
-
Lee, M.-C.1
Marx, C.J.2
-
62
-
-
84899979623
-
Ordering microbial diversity into ecologically and genetically cohesive units
-
Shapiro B.J., Polz M.F. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014, 22:235-247.
-
(2014)
Trends Microbiol.
, vol.22
, pp. 235-247
-
-
Shapiro, B.J.1
Polz, M.F.2
-
63
-
-
79953315166
-
Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes
-
Popa O., et al. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res. 2011, 21:599-609.
-
(2011)
Genome Res.
, vol.21
, pp. 599-609
-
-
Popa, O.1
-
64
-
-
84898861325
-
Extensive cotransformation of natural variation into chromosomes of naturally competent Haemophilus influenzae
-
Mell J.C., et al. Extensive cotransformation of natural variation into chromosomes of naturally competent Haemophilus influenzae. G3 (Bethesda) 2014, 4:717-731.
-
(2014)
G3 (Bethesda)
, vol.4
, pp. 717-731
-
-
Mell, J.C.1
-
65
-
-
0030620272
-
Role of mutator alleles in adaptive evolution
-
Taddei F., et al. Role of mutator alleles in adaptive evolution. Nature 1997, 387:700-702.
-
(1997)
Nature
, vol.387
, pp. 700-702
-
-
Taddei, F.1
-
66
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini L.A., Sontheimer E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322:1843-1845.
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
67
-
-
77952398183
-
Diversity of CRISPR loci in Escherichia coli
-
Díez-Villaseñor C., et al. Diversity of CRISPR loci in Escherichia coli. Microbiology 2010, 156:1351-1361.
-
(2010)
Microbiology
, vol.156
, pp. 1351-1361
-
-
Díez-Villaseñor, C.1
|