메뉴 건너뛰기




Volumn 29, Issue 8, 2015, Pages 2115-2126

Retraction Note to: Support vector regression methodology for prediction of output energy in rice production (Stochastic Environmental Research and Risk Assessment, (2015), 29, 8, (2115-2126), 10.1007/s00477-015-1055-z);Support vector regression methodology for prediction of output energy in rice production

Author keywords

Energy; Rice; Support vector machine; Support vector regression

Indexed keywords

AGRICULTURAL PRODUCTS; DECISION MAKING; FOOD SUPPLY; FORECASTING; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 84943200518     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-019-01674-2     Document Type: Erratum
Times cited : (23)

References (55)
  • 1
    • 85080576440 scopus 로고    scopus 로고
    • Annual agricultural statistics
    • Anonymous (2011) Annual agricultural statistics. Ministry of Jihad-e-Agriculture of Iran. http://www.maj.ir
    • (2011) Ministry of Jihad-e-Agriculture of Iran
  • 2
    • 85018124130 scopus 로고    scopus 로고
    • Annual agricultural statistics
    • Anonymous (2013) Annual agricultural statistics. Ministry of Jahad-e-Agriculture of Iran. http://www.maj.ir/portal/Home/Default.aspx?CategoryID=20ad25e49-c727-724bc729-9254-de9648a9255f9254d9252
    • (2013) Ministry of Jahad-e-Agriculture of Iran
  • 3
    • 71149094442 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for drought forecasting
    • Bacanli UG, Firat M, Dikbas F (2009) Adaptive neuro-fuzzy inference system for drought forecasting. Stoch Environ Res Risk Assess 23:1143–1154
    • (2009) Stoch Environ Res Risk Assess , vol.23 , pp. 1143-1154
    • Bacanli, U.G.1    Firat, M.2    Dikbas, F.3
  • 4
    • 78649486389 scopus 로고    scopus 로고
    • Rule extraction from support vector machines: a review
    • Barakat N, Bradley AP (2010) Rule extraction from support vector machines: a review. Neurocomputing 74:178–190
    • (2010) Neurocomputing , vol.74 , pp. 178-190
    • Barakat, N.1    Bradley, A.P.2
  • 6
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in runoff modeling
    • Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36:7624–7629
    • (2009) Expert Syst Appl , vol.36 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Eazi, M.3    Palhang, M.4
  • 7
    • 77950339241 scopus 로고    scopus 로고
    • Energy assessment of peri-urban horticulture and its uncertainty: case study for Bogota, Colombia
    • Bojacá CR, Schrevens E (2010) Energy assessment of peri-urban horticulture and its uncertainty: case study for Bogota, Colombia. Energy 35:2109–2118
    • (2010) Energy , vol.35 , pp. 2109-2118
    • Bojacá, C.R.1    Schrevens, E.2
  • 8
    • 84883355288 scopus 로고    scopus 로고
    • Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
    • Chen K, Yu J (2014) Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Appl Energy 113:690–705
    • (2014) Appl Energy , vol.113 , pp. 690-705
    • Chen, K.1    Yu, J.2
  • 9
    • 84921279026 scopus 로고    scopus 로고
    • Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction
    • Chiroma H, Abdulkareem S, Herawan T (2015) Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction. Appl Energy 142:266–273
    • (2015) Appl Energy , vol.142 , pp. 266-273
    • Chiroma, H.1    Abdulkareem, S.2    Herawan, T.3
  • 10
    • 1642578192 scopus 로고    scopus 로고
    • Modelling of river discharges and rainfall using radial basis function networks based on support vector regression
    • Choy KY, Chan CW (2003) Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. Int J Syst Sci 34:763–773
    • (2003) Int J Syst Sci , vol.34 , pp. 763-773
    • Choy, K.Y.1    Chan, C.W.2
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 33645408287 scopus 로고    scopus 로고
    • Energy and economic analysis of sweet cherry production in Turkey: a case study from Isparta province
    • Demircan V, Ekinci K, Keener HM, Akbolat D, Ekinci C (2006) Energy and economic analysis of sweet cherry production in Turkey: a case study from Isparta province. Energy Convers Manag 47:1761–1769
    • (2006) Energy Convers Manag , vol.47 , pp. 1761-1769
    • Demircan, V.1    Ekinci, K.2    Keener, H.M.3    Akbolat, D.4    Ekinci, C.5
  • 14
    • 84860603446 scopus 로고    scopus 로고
    • Determining the critical success factors of oral cancer susceptibility prediction in Malaysia using fuzzy models
    • Dom RM, Abidin B, Kareem SA, Ismail SM, Daud NM (2012) Determining the critical success factors of oral cancer susceptibility prediction in Malaysia using fuzzy models. Sains Malay 41(5):633–640
    • (2012) Sains Malay , vol.41 , Issue.5 , pp. 633-640
    • Dom, R.M.1    Abidin, B.2    Kareem, S.A.3    Ismail, S.M.4    Daud, N.M.5
  • 15
    • 33749254811 scopus 로고    scopus 로고
    • Energy use and economical analysis of sugar beet production in Tokat province of Turkey
    • Erdal G, Esengün K, Erdal H, Gündüz O (2007) Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 32:35–41
    • (2007) Energy , vol.32 , pp. 35-41
    • Erdal, G.1    Esengün, K.2    Erdal, H.3    Gündüz, O.4
  • 17
    • 77954386440 scopus 로고    scopus 로고
    • Monthly total sediment forecasting using adaptive neuro fuzzy inference system
    • Firat M, Güngör M (2010) Monthly total sediment forecasting using adaptive neuro fuzzy inference system. Stoch Environ Res Risk Assess 24:259–270
    • (2010) Stoch Environ Res Risk Assess , vol.24 , pp. 259-270
    • Firat, M.1    Güngör, M.2
  • 18
    • 84919877796 scopus 로고    scopus 로고
    • Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin
    • Ghavidel SZZ, Montaseri M (2014) Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin. Stoch Environ Res Risk Assess 28:2101–2118
    • (2014) Stoch Environ Res Risk Assess , vol.28 , pp. 2101-2118
    • Ghavidel, S.Z.Z.1    Montaseri, M.2
  • 19
    • 79951575996 scopus 로고    scopus 로고
    • Comparing ANFIS and SEM in linear and nonlinear forecasting of new product development performance
    • Ho Y-C, Tsai C-T (2011) Comparing ANFIS and SEM in linear and nonlinear forecasting of new product development performance. Expert Syst Appl 38:6498–6507
    • (2011) Expert Syst Appl , vol.38 , pp. 6498-6507
    • Ho, Y.-C.1    Tsai, C.-T.2
  • 20
    • 84938586959 scopus 로고    scopus 로고
    • Using the gravitational emulation local search algorithm to solve the multi-objective flexible dynamic job shop scheduling problem in Small and Medium Enterprises
    • Hosseinabadi AAR, Siar H, Shamshirband S, Shojafar M, Nasir MHNM (2014) Using the gravitational emulation local search algorithm to solve the multi-objective flexible dynamic job shop scheduling problem in Small and Medium Enterprises. Ann Oper Res. doi:10.1007/s10479-014-1770-8
    • (2014) Ann Oper Res
    • Hosseinabadi, A.A.R.1    Siar, H.2    Shamshirband, S.3    Shojafar, M.4    Nasir, M.H.N.M.5
  • 21
    • 84889065631 scopus 로고    scopus 로고
    • Software reliability prediction model based on support vector regression with improved estimation of distribution algorithms
    • Jin C, Jin S-W (2014) Software reliability prediction model based on support vector regression with improved estimation of distribution algorithms. Appl Soft Comput 15:113–120
    • (2014) Appl Soft Comput , vol.15 , pp. 113-120
    • Jin, C.1    Jin, S.-W.2
  • 23
    • 84887075886 scopus 로고    scopus 로고
    • Application of multi-layer adaptive neuro-fuzzy inference system for estimation of greenhouse strawberry yield
    • Khoshnevisan B, Rafiee S, Mousazadeh H (2014b) Application of multi-layer adaptive neuro-fuzzy inference system for estimation of greenhouse strawberry yield. Measurement 47:903–910
    • (2014) Measurement , vol.47 , pp. 903-910
    • Khoshnevisan, B.1    Rafiee, S.2    Mousazadeh, H.3
  • 24
    • 84975794206 scopus 로고    scopus 로고
    • Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system
    • Khoshnevisan B, Rafiee S, Omid M, Mousazadeh H (2014c) Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement 47:521–530
    • (2014) Measurement , vol.47 , pp. 521-530
    • Khoshnevisan, B.1    Rafiee, S.2    Omid, M.3    Mousazadeh, H.4
  • 25
    • 84896866955 scopus 로고    scopus 로고
    • Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling
    • COI: 1:CAS:528:DC%2BC2cXmtVWrsrc%3D
    • Khoshnevisan B, Rajaeifar MA, Clark S, Shamahirband S, Anuar NB, Shuib NLM, Gani A (2014d) Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Sci Total Environ 481:242–251
    • (2014) Sci Total Environ , vol.481 , pp. 242-251
    • Khoshnevisan, B.1    Rajaeifar, M.A.2    Clark, S.3    Shamahirband, S.4    Anuar, N.B.5    Shuib, N.L.M.6    Gani, A.7
  • 27
    • 61749101135 scopus 로고    scopus 로고
    • Input–output energy analysis of cherries production in Tokat Province of Turkey
    • Kizilaslan H (2009) Input–output energy analysis of cherries production in Tokat Province of Turkey. Appl Energy 86:1354–1358
    • (2009) Appl Energy , vol.86 , pp. 1354-1358
    • Kizilaslan, H.1
  • 28
    • 84889642598 scopus 로고    scopus 로고
    • Evolutionary support vector regression algorithm applied to the prediction of the thickness of the chromium layer in a hard chromium plating process
    • Lasheras FS, Nieto PJG, de Cos Juez FJ, Vilán JAV (2014) Evolutionary support vector regression algorithm applied to the prediction of the thickness of the chromium layer in a hard chromium plating process. Appl Math Comput 227:164–170
    • (2014) Appl Math Comput , vol.227 , pp. 164-170
    • Lasheras, F.S.1    Nieto, P.J.G.2    de Cos Juez, F.J.3    Vilán, J.A.V.4
  • 29
    • 84885018344 scopus 로고    scopus 로고
    • Assessment for surface water quality in Lake Taihu Tiaoxi River Basin China based on support vector machine
    • Li W, Yang M, Liang Z, Zhu Y, Mao W, Shi J, Chen Y (2013) Assessment for surface water quality in Lake Taihu Tiaoxi River Basin China based on support vector machine. Stoch Environ Res Risk Assess 27:1861–1870
    • (2013) Stoch Environ Res Risk Assess , vol.27 , pp. 1861-1870
    • Li, W.1    Yang, M.2    Liang, Z.3    Zhu, Y.4    Mao, W.5    Shi, J.6    Chen, Y.7
  • 31
    • 84877815112 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization
    • Liu S, Xu L, Li D, Li Q, Jiang Y, Tai H, Zeng L (2013) Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization. Comput Electron Agric 95:82–91
    • (2013) Comput Electron Agric , vol.95 , pp. 82-91
    • Liu, S.1    Xu, L.2    Li, D.3    Li, Q.4    Jiang, Y.5    Tai, H.6    Zeng, L.7
  • 33
    • 79959827788 scopus 로고    scopus 로고
    • Optimization of energy consumption for soybean production using data envelopment analysis (DEA) approach
    • Mousavi-Avval SH, Rafiee S, Jafari A, Mohammadi A (2011) Optimization of energy consumption for soybean production using data envelopment analysis (DEA) approach. Appl Energy 88:3765–3772
    • (2011) Appl Energy , vol.88 , pp. 3765-3772
    • Mousavi-Avval, S.H.1    Rafiee, S.2    Jafari, A.3    Mohammadi, A.4
  • 36
    • 84975883509 scopus 로고    scopus 로고
    • Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production
    • COI: 1:CAS:528:DC%2BC38Xjsl2hsw%3D%3D
    • Pahlavan R, Omid M, Akram A (2012) Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37:171–176
    • (2012) Energy , vol.37 , pp. 171-176
    • Pahlavan, R.1    Omid, M.2    Akram, A.3
  • 37
    • 44949102299 scopus 로고    scopus 로고
    • A comparison of neural network and multiple regression analysis in modeling capital structure
    • Pao H-T (2008) A comparison of neural network and multiple regression analysis in modeling capital structure. Expert Syst Appl 35:720–727
    • (2008) Expert Syst Appl , vol.35 , pp. 720-727
    • Pao, H.-T.1
  • 41
    • 80053441500 scopus 로고    scopus 로고
    • Energy and economic analysis of rice production under different farm levels in Guilan province of Iran
    • Pishgar-Komleh SH, Sefeedpari P, Rafiee S (2011) Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy 36:5824–5831
    • (2011) Energy , vol.36 , pp. 5824-5831
    • Pishgar-Komleh, S.H.1    Sefeedpari, P.2    Rafiee, S.3
  • 43
    • 79961029951 scopus 로고    scopus 로고
    • Determination and modelling of energy consumption in wheat production using neural networks: a case study in Canterbury province, New Zealand
    • Safa M, Samarasinghe S (2011) Determination and modelling of energy consumption in wheat production using neural networks: a case study in Canterbury province, New Zealand. Energy 36:5140–5147
    • (2011) Energy , vol.36 , pp. 5140-5147
    • Safa, M.1    Samarasinghe, S.2
  • 44
    • 84872667310 scopus 로고    scopus 로고
    • Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration
    • Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, Marti P (2013) Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration. J Hydrol 480:46–57
    • (2013) J Hydrol , vol.480 , pp. 46-57
    • Shiri, J.1    Nazemi, A.H.2    Sadraddini, A.A.3    Landeras, G.4    Kisi, O.5    Fard, A.F.6    Marti, P.7
  • 45
    • 85070846646 scopus 로고    scopus 로고
    • Cost estimation predictive modeling: regression versus neural network
    • Smith AE, Mason AK (1996) Cost estimation predictive modeling: regression versus neural network. Eng Econ 6:1–28
    • (1996) Eng Econ , vol.6 , pp. 1-28
    • Smith, A.E.1    Mason, A.K.2
  • 46
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A, Schölkopf B (2004) A tutorial on support vector regression. Statist Comput 14:199–222
    • (2004) Statist Comput , vol.14 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 47
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 48
    • 37349095760 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of ophthalmic arterial disorders
    • Übeyli ED (2008) Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of ophthalmic arterial disorders. Expert Syst Appl 34:2201–2209
    • (2008) Expert Syst Appl , vol.34 , pp. 2201-2209
    • Übeyli, E.D.1
  • 49
    • 0002660750 scopus 로고    scopus 로고
    • The support vector method of function estimation
    • Vapnik VN (1998a) The support vector method of function estimation. Nonlinear Model 1998:55–85
    • (1998) Nonlinear Model , vol.1998 , pp. 55-85
    • Vapnik, V.N.1
  • 51
    • 84879322256 scopus 로고    scopus 로고
    • A dynamic particle filter-support vector regression method for reliability prediction
    • Wei Z, Tao T, ZhuoShu D, Zio E (2013) A dynamic particle filter-support vector regression method for reliability prediction. Reliab Eng Syst Saf 119:109–116
    • (2013) Reliab Eng Syst Saf , vol.119 , pp. 109-116
    • Wei, Z.1    Tao, T.2    ZhuoShu, D.3    Zio, E.4
  • 52
    • 33845702662 scopus 로고    scopus 로고
    • Forecasting of hydrologic time series with ridge regression in feature space
    • Yu X, Liong S-Y (2007) Forecasting of hydrologic time series with ridge regression in feature space. J Hydrol 332:290–302
    • (2007) J Hydrol , vol.332 , pp. 290-302
    • Yu, X.1    Liong, S.-Y.2
  • 53
    • 84975865393 scopus 로고    scopus 로고
    • A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran
    • Zangeneh M, Omid M, Akram A (2010) A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy 35:2927–2933
    • (2010) Energy , vol.35 , pp. 2927-2933
    • Zangeneh, M.1    Omid, M.2    Akram, A.3
  • 54
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • COI: 1:CAS:528:DyaK1MXjs1SlsA%3D%3D
    • Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14:35–62
    • (1998) Int J Forecast , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 55
    • 84867884437 scopus 로고    scopus 로고
    • Iterated time series prediction with multiple support vector regression models
    • Zhang L, Zhou W-D, Chang P-C, Yang J-W, Li F-Z (2013) Iterated time series prediction with multiple support vector regression models. Neurocomputing 99:411–422
    • (2013) Neurocomputing , vol.99 , pp. 411-422
    • Zhang, L.1    Zhou, W.-D.2    Chang, P.-C.3    Yang, J.-W.4    Li, F.-Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.