메뉴 건너뛰기




Volumn 41, Issue 5, 2012, Pages 633-640

Determining the critical success factors of oral cancer susceptibility prediction in Malaysia using fuzzy models

Author keywords

Fuzzy logic; Fuzzy neural networks; Fuzzy regression; Oral cancer; Prediction performance

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CANCER; COMPUTER SIMULATION; CRITICAL ANALYSIS; FUZZY MATHEMATICS; PREDICTION; REGRESSION ANALYSIS;

EID: 84860603446     PISSN: 01266039     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (15)

References (19)
  • 2
    • 9644278055 scopus 로고    scopus 로고
    • Knowledge discovery by a neuro-fuzzy modeling framework
    • Castellano, G. & C., Fanelli, A. 2005. Knowledge discovery by a neuro-fuzzy modeling framework. Fuzzy Sets and Systems 149: 187-207.
    • (2005) Fuzzy Sets and Systems , vol.149 , pp. 187-207
    • Castellano, G.1    Fanelli, A.2
  • 4
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • DOI 10.1016/S1532-0464(03)00034-0
    • Dreiseitl, S. & Ohno-Machado, L. 2002. Logistic regression and artificial neural network classification models: amethodology review. Jounal of Biomedical Informatics 35: 352-359. (Pubitemid 36951935)
    • (2002) Journal of Biomedical Informatics , vol.35 , Issue.5-6 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 5
    • 0033330755 scopus 로고    scopus 로고
    • Neuro-fuzzy approach versus rough-set inspired methodology for Intelligent decision support
    • Gorzalczany, M & Piasta Z. 1999. Neuro-fuzzy approach versus rough-set inspired methodology for Intelligent decision support. Information Sciences 120(1): 45-48.
    • (1999) Information Sciences , vol.120 , Issue.1 , pp. 45-48
    • Gorzalczany, M.1    Piasta, Z.2
  • 6
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, R. 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. On Systems, Man and Cybernetics 23(3): 665-685.
    • (1993) IEEE Trans. on Systems, Man and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, R.1
  • 7
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • DOI 10.1016/S0933-3657(01)00077-X, PII S093336570100077X
    • Kononenko, I. 2000. Machine learning for medical diagnosis: History, state of the art and perspective. Artificiallntelligence inMedicine23(1): 89-109. (Pubitemid 32677979)
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 8
    • 26044460461 scopus 로고    scopus 로고
    • The use of receiver operating characteristic curves in biomedical informatics
    • DOI 10.1016/j.jbi.2005.02.008, PII S1532046405000171
    • Lasko, T., Bhagwat, J., Zou, K., Machado, L. 2005. The use of receiver operating characteristic curves in biomedical informatics. Jounal of Biomedical Informatics 38: 404-415. (Pubitemid 41405811)
    • (2005) Journal of Biomedical Informatics , vol.38 , Issue.5 , pp. 404-415
    • Lasko, T.A.1    Bhagwat, J.G.2    Zou, K.H.3    Ohno-Machado, L.4
  • 9
    • 1842422502 scopus 로고    scopus 로고
    • The Malaysian Telehealth Flagship Application: A national approach to health data protection and utilisation and consumer rights
    • DOI 10.1016/j.ijmedinf.2003.11.023, PII S1386505603001837
    • Mohan, J. & Yaacob, R. 2004. The Malaysian Telehealth Flagship Application: A national approach to health data protection and utilisation and consumer rights. International Journal of Medical Informatics 73: 217-227. (Pubitemid 38452934)
    • (2004) International Journal of Medical Informatics , vol.73 , Issue.3 , pp. 217-227
    • Mohan, J.1    Razali Raja Yaacob, R.2
  • 13
    • 3242675121 scopus 로고    scopus 로고
    • A mathematical-programming approach to fuzzy linear regression analysis
    • Nasrabadi, M. & Nasrabadi, E. 2004. A mathematical-programming approach to fuzzy linear regression analysis. AppliedMathematicsand Computation 155: 873-881.
    • (2004) AppliedMathematicsand Computation , vol.155 , pp. 873-881
    • Nasrabadi, M.1    Nasrabadi, E.2
  • 14
    • 0001875235 scopus 로고
    • Evaluation of fuzzy linear regression models
    • Savic, D. & Pedrycz, W. 1991. Evaluation of fuzzy linear regression models. Fuzzy Sets and Systems 39(1): 51-63.
    • (1991) Fuzzy Sets and Systems , vol.39 , Issue.1 , pp. 51-63
    • Savic, D.1    Pedrycz, W.2
  • 15
    • 0029652203 scopus 로고
    • The use of artificial intelligence to identify people at risk of oral cancer and precancer
    • Speight, P., Elliott, A., Jullien, J., Downer & M., Zakzrewska, J. 1995. The use of artificial intelligence to identify people at risk of oral cancer and precancer. British DentaI JournaI 179: 382-387.
    • (1995) British DentaI JournaI , vol.179 , pp. 382-387
    • Speight, P.1    Elliott, A.2    Downer, J.J.3    Zakzrewska, J.4
  • 16
    • 0032205733 scopus 로고    scopus 로고
    • Interval regression analysis by quadratic programming approach
    • Tanaka, H. & H. Lee 1998. Interval Regression Analysis by Quadratic Programming Approach. IEEE Transactions on Fuzzy Systems 6(4)
    • (1998) IEEE Transactions on Fuzzy Systems , vol.6 , Issue.4
    • Tanaka, H.1    Lee, H.2
  • 17
    • 0001325256 scopus 로고    scopus 로고
    • Insight of a fuzzy regression model
    • Wang, H. & Tsaur, R. 2000. Insight of a fuzzy regression model. Fuzzyset and systems 112: 355-369.
    • (2000) Fuzzyset and Systems , vol.112 , pp. 355-369
    • Wang, H.1    Tsaur, R.2
  • 19
    • 0035086807 scopus 로고    scopus 로고
    • Cultural and dietary risk factors of oral cancer and precancer - A brief overview
    • DOI 10.1016/S1368-8375(00)00133-0, PII S1368837500001330
    • Zain, R. 2001. Cultural and dietary risk factors of oral cancer and pre-cancer-A brief overview. Oral Oncology 37:205-210. (Pubitemid 32245843)
    • (2001) Oral Oncology , vol.37 , Issue.3 , pp. 205-210
    • Zain, R.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.