메뉴 건너뛰기




Volumn 227, Issue , 2014, Pages 164-170

Evolutionary support vector regression algorithm applied to the prediction of the thickness of the chromium layer in a hard chromium plating process

Author keywords

Evolutionary algorithms (EAs); Evolutionary support vector machines (ESVMs); Hard chromium plating process; Machine learning; Support vector machines for regression (SVR)

Indexed keywords

ELECTROPLATING INDUSTRY; ELECTROPLATING PROCESS; EVOLUTIONARY ALGORITHMS (EAS); EVOLUTIONARY STRATEGIES; EVOLUTIONARY SUPPORT VECTOR MACHINES (ESVMS); HARD CHROMIUM PLATING; SUPPORT VECTOR MACHINE (SVMS); SUPPORT VECTOR REGRESSION ALGORITHMS;

EID: 84889642598     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2013.11.031     Document Type: Article
Times cited : (17)

References (33)
  • 1
    • 84889675624 scopus 로고
    • U.S. Patent 1,581,188, April 20
    • C.G. Fink, U.S. Patent 1,581,188, April 20, 1926.
    • (1926)
    • Fink, C.G.1
  • 3
    • 0004199133 scopus 로고
    • Reinhold Publishing Corporation New York
    • M.J. Udy Chromium 1956 Reinhold Publishing Corporation New York
    • (1956) Chromium
    • Udy, M.J.1
  • 8
    • 77955658249 scopus 로고    scopus 로고
    • The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process
    • F. Sánchez Lasheras, J.A. Vilán Vilán, P.J. García Nieto, and J.J. del Coz Díaz The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process Mathematical and Computer Modelling 52 7-8 2010 1169 1176
    • (2010) Mathematical and Computer Modelling , vol.52 , Issue.78 , pp. 1169-1176
    • Sánchez Lasheras, F.1    Vilán Vilán, J.A.2    García Nieto, P.J.3    Del Coz Díaz, J.J.4
  • 11
    • 57649199808 scopus 로고    scopus 로고
    • The optimization of Cr (VI) reduction and removal by electrocoagulation using response surface methodology
    • T. Ölmez The optimization of Cr (VI) reduction and removal by electrocoagulation using response surface methodology Journal of Hazardous Materials 162 2009 1371 1378
    • (2009) Journal of Hazardous Materials , vol.162 , pp. 1371-1378
    • Ölmez, T.1
  • 12
    • 9744244872 scopus 로고    scopus 로고
    • Effect of a thin hard chromium coating on fatigue behavior of 4140 steel
    • M.J. Ortiz Effect of a thin hard chromium coating on fatigue behavior of 4140 steel Surface Engineering 20 2004 345 352
    • (2004) Surface Engineering , vol.20 , pp. 345-352
    • Ortiz, M.J.1
  • 14
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • DOI 10.1016/j.neucom.2004.11.022, PII S0925231204005223
    • F. Friedrichs, and C. Igel Evolutionary tuning of multiple SVM parameters Neurocomputing 64 2005 107 117 (Pubitemid 40425314)
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 15
    • 84874658814 scopus 로고    scopus 로고
    • Applications of evolutionary SVM to prediction of membrane alpha-helices
    • H.B. Kazemian, K. White, and D. Palmer-Brown Applications of evolutionary SVM to prediction of membrane alpha-helices Expert Systems with Applications 40 9 2013 3412 3420
    • (2013) Expert Systems with Applications , vol.40 , Issue.9 , pp. 3412-3420
    • Kazemian, H.B.1    White, K.2    Palmer-Brown, D.3
  • 17
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 18
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Schölkopf A tutorial on support vector regression Statistics and Computing 14 3 1998 199 222
    • (1998) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 20
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. Vapnik An overview of statistical learning theory IEEE Transactions on Neural Networks 10 1999 988 999
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.1
  • 25
    • 0002193511 scopus 로고
    • Evolutionary programming and evolution strategies: Similarities and differences
    • IEEE Computer Society (Eds.) Washington, DC, USA
    • T. Bäck, G. Rudolph, H.P. Schwefel, Evolutionary programming and evolution strategies: similarities and differences, in: IEEE Computer Society (Eds.), Proceedings of the Second Annual Conference on Evolutionary Programming, Washington, DC, USA, 1993, pp. 11-22.
    • (1993) Proceedings of the Second Annual Conference on Evolutionary Programming , pp. 11-22
    • Bäck, T.1    Rudolph, G.2    Schwefel, H.P.3
  • 26
    • 0028338155 scopus 로고
    • An introduction to simulated evolutionary optimization
    • D.B. Fogel An introduction to simulated evolutionary optimization IEEE Transactions on Neural Networks 5 1 1994 3 14
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.1 , pp. 3-14
    • Fogel, D.B.1
  • 28
    • 1542273610 scopus 로고    scopus 로고
    • Evolutionary programming using mutations based on the levy probability distribution
    • C.Y. Lee, and X. Yao Evolutionary programming using mutations based on the levy probability distribution IEEE Transactions on Evolutionary Computation 8 1 2004 1 13
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , Issue.1 , pp. 1-13
    • Lee, C.Y.1    Yao, X.2
  • 32
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0
    • R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0, URL: http://www.R-project.org/.
    • R: A Language and Environment for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.