메뉴 건너뛰기




Volumn 1850, Issue 12, 2015, Pages 2476-2484

Nitric oxide and the thioredoxin system: A complex interplay in redox regulation

Author keywords

Cysteine; Nitric oxide; Nitrosylation; Thioredoxin

Indexed keywords

ENDOTHELIAL NITRIC OXIDE SYNTHASE; INDUCIBLE NITRIC OXIDE SYNTHASE; NITRIC OXIDE; THIOL; THIOREDOXIN; THIOREDOXIN REDUCTASE;

EID: 84942358036     PISSN: 03044165     EISSN: 18728006     Source Type: Journal    
DOI: 10.1016/j.bbagen.2015.09.010     Document Type: Review
Times cited : (67)

References (133)
  • 1
    • 3242712276 scopus 로고    scopus 로고
    • Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers
    • H.J. Forman, J.M. Fukuto, and M. Torres Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers Am. J. Physiol. Cell Physiol. 287 2004 C246 C256
    • (2004) Am. J. Physiol. Cell Physiol. , vol.287 , pp. C246-C256
    • Forman, H.J.1    Fukuto, J.M.2    Torres, M.3
  • 2
    • 48449107159 scopus 로고    scopus 로고
    • Thiol chemistry and specificity in redox signaling
    • C.C. Winterbourn, and M.B. Hampton Thiol chemistry and specificity in redox signaling Free Radic. Biol. Med. 45 2008 549 561
    • (2008) Free Radic. Biol. Med. , vol.45 , pp. 549-561
    • Winterbourn, C.C.1    Hampton, M.B.2
  • 4
    • 64549097266 scopus 로고    scopus 로고
    • Thiol-based redox switches in eukaryotic proteins
    • N. Brandes, S. Schmitt, and U. Jakob Thiol-based redox switches in eukaryotic proteins Antioxid. Redox Signal. 11 2009 997 1014
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 997-1014
    • Brandes, N.1    Schmitt, S.2    Jakob, U.3
  • 5
    • 34648813720 scopus 로고    scopus 로고
    • ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis
    • B. D'Autreaux, and M.B. Toledano ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis Nat. Rev. Mol. Cell Biol. 8 2007 813 824
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 813-824
    • D'Autreaux, B.1    Toledano, M.B.2
  • 6
    • 84856834259 scopus 로고    scopus 로고
    • Analysis and functional prediction of reactive cysteine residues
    • S.M. Marino, and V.N. Gladyshev Analysis and functional prediction of reactive cysteine residues J. Biol. Chem. 287 2012 4419 4425
    • (2012) J. Biol. Chem. , vol.287 , pp. 4419-4425
    • Marino, S.M.1    Gladyshev, V.N.2
  • 7
    • 84923919258 scopus 로고    scopus 로고
    • The basics of thiols and cysteines in redox biology and chemistry
    • L.B. Poole The basics of thiols and cysteines in redox biology and chemistry Free Radic. Biol. Med. 80C 2015 148 157
    • (2015) Free Radic. Biol. Med. , vol.80 C , pp. 148-157
    • Poole, L.B.1
  • 8
    • 84874081337 scopus 로고    scopus 로고
    • Diverse functional roles of reactive cysteines
    • N.J. Pace, and E. Weerapana Diverse functional roles of reactive cysteines ACS Chem. Biol. 8 2012 283 296
    • (2012) ACS Chem. Biol. , vol.8 , pp. 283-296
    • Pace, N.J.1    Weerapana, E.2
  • 9
    • 84884179284 scopus 로고    scopus 로고
    • The redox proteome
    • Y.M. Go, and D.P. Jones The redox proteome J. Biol. Chem. 288 2013 26512 26520
    • (2013) J. Biol. Chem. , vol.288 , pp. 26512-26520
    • Go, Y.M.1    Jones, D.P.2
  • 10
    • 84880105471 scopus 로고    scopus 로고
    • Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery
    • C.E. Paulsen, and K.S. Carroll Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery Chem. Rev. 113 2013 4633 4679
    • (2013) Chem. Rev. , vol.113 , pp. 4633-4679
    • Paulsen, C.E.1    Carroll, K.S.2
  • 11
    • 33846863589 scopus 로고    scopus 로고
    • Nitric oxide and peroxynitrite in health and disease
    • P. Pacher, J.S. Beckman, and L. Liaudet Nitric oxide and peroxynitrite in health and disease Physiol. Rev. 87 2007 315 424
    • (2007) Physiol. Rev. , vol.87 , pp. 315-424
    • Pacher, P.1    Beckman, J.S.2    Liaudet, L.3
  • 12
    • 0028132836 scopus 로고
    • Redox signaling: Nitrosylation and related target interactions of nitric oxide
    • J.S. Stamler Redox signaling: nitrosylation and related target interactions of nitric oxide Cell 78 1994 931 936
    • (1994) Cell , vol.78 , pp. 931-936
    • Stamler, J.S.1
  • 13
    • 77953752629 scopus 로고    scopus 로고
    • What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology
    • B.G. Hill, B.P. Dranka, S.M. Bailey, J.R. Lancaster Jr., and V.M. Darley-Usmar What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology J. Biol. Chem. 285 2010 19699 19704
    • (2010) J. Biol. Chem. , vol.285 , pp. 19699-19704
    • Hill, B.G.1    Dranka, B.P.2    Bailey, S.M.3    Lancaster, J.R.4    Darley-Usmar, V.M.5
  • 14
    • 79957933470 scopus 로고    scopus 로고
    • Nitric oxide signaling: Classical, less classical, and nonclassical mechanisms
    • A. Martinez-Ruiz, S. Cadenas, and S. Lamas Nitric oxide signaling: classical, less classical, and nonclassical mechanisms Free Radic. Biol. Med. 51 2011 17 29
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 17-29
    • Martinez-Ruiz, A.1    Cadenas, S.2    Lamas, S.3
  • 17
    • 84884194110 scopus 로고    scopus 로고
    • Regulation of protein function and signaling by reversible cysteine S-nitrosylation
    • N. Gould, P.T. Doulias, M. Tenopoulou, K. Raju, and H. Ischiropoulos Regulation of protein function and signaling by reversible cysteine S-nitrosylation J. Biol. Chem. 288 2013 26473 26479
    • (2013) J. Biol. Chem. , vol.288 , pp. 26473-26479
    • Gould, N.1    Doulias, P.T.2    Tenopoulou, M.3    Raju, K.4    Ischiropoulos, H.5
  • 18
    • 79851512689 scopus 로고    scopus 로고
    • The SNO-proteome: Causation and classifications
    • D. Seth, and J.S. Stamler The SNO-proteome: causation and classifications Curr. Opin. Chem. Biol. 15 2011 129 136
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 129-136
    • Seth, D.1    Stamler, J.S.2
  • 19
    • 84942323555 scopus 로고    scopus 로고
    • DbSNO 2.0: A resource for exploring structural environment, functional and disease association and regulatory network of protein S-nitrosylation
    • Y.J. Chen, C.T. Lu, M.G. Su, K.Y. Huang, W.C. Ching, H.H. Yang, Y.C. Liao, Y.J. Chen, and T.Y. Lee dbSNO 2.0: a resource for exploring structural environment, functional and disease association and regulatory network of protein S-nitrosylation Nucleic Acids Res. 43 2015 D503 D511
    • (2015) Nucleic Acids Res. , vol.43 , pp. D503-D511
    • Chen, Y.J.1    Lu, C.T.2    Su, M.G.3    Huang, K.Y.4    Ching, W.C.5    Yang, H.H.6    Liao, Y.C.7    Chen, Y.J.8    Lee, T.Y.9
  • 20
    • 84860439593 scopus 로고    scopus 로고
    • S-nitrosylation signaling regulates cellular protein interactions
    • N.V. Marozkina, and B. Gaston S-nitrosylation signaling regulates cellular protein interactions Biochim. Biophys. Acta 1820 2012 722 729
    • (2012) Biochim. Biophys. Acta , vol.1820 , pp. 722-729
    • Marozkina, N.V.1    Gaston, B.2
  • 21
    • 70349466515 scopus 로고    scopus 로고
    • Protein denitrosylation: Enzymatic mechanisms and cellular functions
    • M. Benhar, M.T. Forrester, and J.S. Stamler Protein denitrosylation: enzymatic mechanisms and cellular functions Nat. Rev. Mol. Cell Biol. 10 2009 721 732
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 721-732
    • Benhar, M.1    Forrester, M.T.2    Stamler, J.S.3
  • 22
    • 84860497776 scopus 로고    scopus 로고
    • The role of thioredoxin in the regulation of cellular processes by S-nitrosylation
    • R. Sengupta, and A. Holmgren The role of thioredoxin in the regulation of cellular processes by S-nitrosylation Biochim. Biophys. Acta 1820 2012 689 700
    • (2012) Biochim. Biophys. Acta , vol.1820 , pp. 689-700
    • Sengupta, R.1    Holmgren, A.2
  • 23
    • 57649198018 scopus 로고    scopus 로고
    • Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability
    • J.S. Paige, G. Xu, B. Stancevic, and S.R. Jaffrey Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability Chem. Biol. 15 2008 1307 1316
    • (2008) Chem. Biol. , vol.15 , pp. 1307-1316
    • Paige, J.S.1    Xu, G.2    Stancevic, B.3    Jaffrey, S.R.4
  • 24
    • 33845428642 scopus 로고    scopus 로고
    • Thioredoxin and related molecules - From biology to health and disease
    • C.H. Lillig, and A. Holmgren Thioredoxin and related molecules - from biology to health and disease Antioxid. Redox Signal. 9 2007 25 47
    • (2007) Antioxid. Redox Signal. , vol.9 , pp. 25-47
    • Lillig, C.H.1    Holmgren, A.2
  • 26
    • 84874051169 scopus 로고    scopus 로고
    • Thioredoxin and thioredoxin target proteins: From molecular mechanisms to functional significance
    • S. Lee, S.M. Kim, and R.T. Lee Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance Antioxid. Redox Signal. 18 2013 1165 1207
    • (2013) Antioxid. Redox Signal. , vol.18 , pp. 1165-1207
    • Lee, S.1    Kim, S.M.2    Lee, R.T.3
  • 27
    • 67349120863 scopus 로고    scopus 로고
    • Focus on mammalian thioredoxin reductases - Important selenoproteins with versatile functions
    • E.S. Arner Focus on mammalian thioredoxin reductases - important selenoproteins with versatile functions Biochim. Biophys. Acta 1790 2009 495 526
    • (2009) Biochim. Biophys. Acta , vol.1790 , pp. 495-526
    • Arner, E.S.1
  • 28
    • 84883774785 scopus 로고    scopus 로고
    • Extracellular thioredoxin: A therapeutic tool to combat inflammation
    • Y. Matsuo, and J. Yodoi Extracellular thioredoxin: a therapeutic tool to combat inflammation Cytokine Growth Factor Rev. 24 2013 345 353
    • (2013) Cytokine Growth Factor Rev. , vol.24 , pp. 345-353
    • Matsuo, Y.1    Yodoi, J.2
  • 30
    • 84876917760 scopus 로고    scopus 로고
    • Thioredoxins, glutaredoxins, and peroxiredoxins - Molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling
    • E.M. Hanschmann, J.R. Godoy, C. Berndt, C. Hudemann, and C.H. Lillig Thioredoxins, glutaredoxins, and peroxiredoxins - molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling Antioxid. Redox Signal. 19 2013 1539 1605
    • (2013) Antioxid. Redox Signal. , vol.19 , pp. 1539-1605
    • Hanschmann, E.M.1    Godoy, J.R.2    Berndt, C.3    Hudemann, C.4    Lillig, C.H.5
  • 31
    • 77952311188 scopus 로고    scopus 로고
    • Thioredoxin and thioredoxin reductase: Current research with special reference to human disease
    • A. Holmgren, and J. Lu Thioredoxin and thioredoxin reductase: current research with special reference to human disease Biochem. Biophys. Res. Commun. 396 2010 120 124
    • (2010) Biochem. Biophys. Res. Commun. , vol.396 , pp. 120-124
    • Holmgren, A.1    Lu, J.2
  • 32
    • 77956312086 scopus 로고    scopus 로고
    • Structure, function, and mechanism of thioredoxin proteins
    • J.F. Collet, and J. Messens Structure, function, and mechanism of thioredoxin proteins Antioxid. Redox Signal. 13 2010 1205 1216
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 1205-1216
    • Collet, J.F.1    Messens, J.2
  • 33
    • 84862556342 scopus 로고    scopus 로고
    • Enzymatic mechanisms regulating protein S-nitrosylation: Implications in health and disease
    • Berlin, Germany
    • P. Anand, and J.S. Stamler Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease J. Mol. Med. 90 2012 233 244 Berlin, Germany
    • (2012) J. Mol. Med. , vol.90 , pp. 233-244
    • Anand, P.1    Stamler, J.S.2
  • 34
    • 84864579819 scopus 로고    scopus 로고
    • The chemical biology of S-nitrosothiols
    • K.A. Broniowska, and N. Hogg The chemical biology of S-nitrosothiols Antioxid. Redox Signal. 17 2012 969 980
    • (2012) Antioxid. Redox Signal. , vol.17 , pp. 969-980
    • Broniowska, K.A.1    Hogg, N.2
  • 35
    • 84872281206 scopus 로고    scopus 로고
    • A conspectus of cellular mechanisms of nitrosothiol formation from nitric oxide
    • Q. Li, and J.R. Lancaster Jr. A conspectus of cellular mechanisms of nitrosothiol formation from nitric oxide Immunopathol. Dis. Therap. 3 2012 183 191
    • (2012) Immunopathol. Dis. Therap. , vol.3 , pp. 183-191
    • Li, Q.1    Lancaster, J.R.2
  • 36
    • 84908202341 scopus 로고    scopus 로고
    • Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations
    • B. Kolesnik, C.L. Heine, R. Schmidt, K. Schmidt, B. Mayer, and A.C. Gorren Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations Free Radic. Biol. Med. 76 2014 286 298
    • (2014) Free Radic. Biol. Med. , vol.76 , pp. 286-298
    • Kolesnik, B.1    Heine, C.L.2    Schmidt, R.3    Schmidt, K.4    Mayer, B.5    Gorren, A.C.6
  • 37
    • 84860390561 scopus 로고    scopus 로고
    • Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: Biological parameters of assembly and disappearance
    • J.R. Hickok, S. Sahni, H. Shen, A. Arvind, C. Antoniou, L.W. Fung, and D.D. Thomas Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance Free Radic. Biol. Med. 51 2011 1558 1566
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 1558-1566
    • Hickok, J.R.1    Sahni, S.2    Shen, H.3    Arvind, A.4    Antoniou, C.5    Fung, L.W.6    Thomas, D.D.7
  • 38
    • 63849086054 scopus 로고    scopus 로고
    • Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide
    • C.A. Bosworth, J.C. Toledo Jr., J.W. Zmijewski, Q. Li, and J.R. Lancaster Jr. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide Proc. Natl. Acad. Sci. U. S. A. 106 2009 4671 4676
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 4671-4676
    • Bosworth, C.A.1    Toledo, J.C.2    Zmijewski, J.W.3    Li, Q.4    Lancaster, J.R.5
  • 41
    • 15444379675 scopus 로고    scopus 로고
    • S-nitrosation and regulation of inducible nitric oxide synthase
    • D.A. Mitchell, P.A. Erwin, T. Michel, and M.A. Marletta S-nitrosation and regulation of inducible nitric oxide synthase Biochemistry 44 2005 4636 4647
    • (2005) Biochemistry , vol.44 , pp. 4636-4647
    • Mitchell, D.A.1    Erwin, P.A.2    Michel, T.3    Marletta, M.A.4
  • 42
    • 84863406254 scopus 로고    scopus 로고
    • Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation
    • B.C. Smith, N.B. Fernhoff, and M.A. Marletta Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation Biochemistry 51 2012 1028 1040
    • (2012) Biochemistry , vol.51 , pp. 1028-1040
    • Smith, B.C.1    Fernhoff, N.B.2    Marletta, M.A.3
  • 45
    • 84872277775 scopus 로고    scopus 로고
    • Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling
    • B.C. Smith, and M.A. Marletta Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling Curr. Opin. Chem. Biol. 16 2012 498 506
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , pp. 498-506
    • Smith, B.C.1    Marletta, M.A.2
  • 46
    • 84870689957 scopus 로고    scopus 로고
    • Emerging role of protein-protein transnitrosylation in cell signaling pathways
    • T. Nakamura, and S.A. Lipton Emerging role of protein-protein transnitrosylation in cell signaling pathways Antioxid. Redox Signal. 18 2013 239 249
    • (2013) Antioxid. Redox Signal. , vol.18 , pp. 239-249
    • Nakamura, T.1    Lipton, S.A.2
  • 47
    • 73649121243 scopus 로고    scopus 로고
    • Structural analysis of cysteine S-nitrosylation: A modified acid-based motif and the emerging role of trans-nitrosylation
    • S.M. Marino, and V.N. Gladyshev Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation J. Mol. Biol. 395 2010 844 859
    • (2010) J. Mol. Biol. , vol.395 , pp. 844-859
    • Marino, S.M.1    Gladyshev, V.N.2
  • 48
    • 84908344979 scopus 로고    scopus 로고
    • Target-selective protein S-nitrosylation by sequence motif recognition
    • J. Jia, A. Arif, F. Terenzi, B. Willard, E.F. Plow, S.L. Hazen, and P.L. Fox Target-selective protein S-nitrosylation by sequence motif recognition Cell 159 2014 623 634
    • (2014) Cell , vol.159 , pp. 623-634
    • Jia, J.1    Arif, A.2    Terenzi, F.3    Willard, B.4    Plow, E.F.5    Hazen, S.L.6    Fox, P.L.7
  • 49
    • 0036174890 scopus 로고    scopus 로고
    • The biochemistry and physiology of S-nitrosothiols
    • N. Hogg The biochemistry and physiology of S-nitrosothiols Annu. Rev. Pharmacol. Toxicol. 42 2002 585 600
    • (2002) Annu. Rev. Pharmacol. Toxicol. , vol.42 , pp. 585-600
    • Hogg, N.1
  • 50
    • 1542328892 scopus 로고    scopus 로고
    • S-nitrosylation: A potential new paradigm in signal transduction
    • A. Martinez-Ruiz, and S. Lamas S-nitrosylation: a potential new paradigm in signal transduction Cardiovasc. Res. 62 2004 43 52
    • (2004) Cardiovasc. Res. , vol.62 , pp. 43-52
    • Martinez-Ruiz, A.1    Lamas, S.2
  • 53
    • 0034617146 scopus 로고    scopus 로고
    • Inhibition of papain by S-nitrosothiols Formation of mixed disulfides
    • M. Xian, X. Chen, Z. Liu, K. Wang, and P.G. Wang Inhibition of papain by S-nitrosothiols Formation of mixed disulfides J. Biol. Chem. 275 2000 20467 20473
    • (2000) J. Biol. Chem. , vol.275 , pp. 20467-20473
    • Xian, M.1    Chen, X.2    Liu, Z.3    Wang, K.4    Wang, P.G.5
  • 54
    • 77950887186 scopus 로고    scopus 로고
    • Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation
    • S. Fourquet, R. Guerois, D. Biard, and M.B. Toledano Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation J. Biol. Chem. 285 2010 8463 8471
    • (2010) J. Biol. Chem. , vol.285 , pp. 8463-8471
    • Fourquet, S.1    Guerois, R.2    Biard, D.3    Toledano, M.B.4
  • 55
    • 84876546405 scopus 로고    scopus 로고
    • Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation
    • R. Engelman, P. Weisman-Shomer, T. Ziv, J. Xu, E.S. Arner, and M. Benhar Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation J. Biol. Chem. 288 2013 11312 11324
    • (2013) J. Biol. Chem. , vol.288 , pp. 11312-11324
    • Engelman, R.1    Weisman-Shomer, P.2    Ziv, T.3    Xu, J.4    Arner, E.S.5    Benhar, M.6
  • 56
    • 0029764601 scopus 로고    scopus 로고
    • S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide
    • D. Nikitovic, and A. Holmgren S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide J. Biol. Chem. 271 1996 19180 19185
    • (1996) J. Biol. Chem. , vol.271 , pp. 19180-19185
    • Nikitovic, D.1    Holmgren, A.2
  • 57
    • 0035932413 scopus 로고    scopus 로고
    • A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans
    • L. Liu, A. Hausladen, M. Zeng, L. Que, J. Heitman, and J.S. Stamler A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans Nature 410 2001 490 494
    • (2001) Nature , vol.410 , pp. 490-494
    • Liu, L.1    Hausladen, A.2    Zeng, M.3    Que, L.4    Heitman, J.5    Stamler, J.S.6
  • 60
    • 58149103872 scopus 로고    scopus 로고
    • Human carbonyl reductase 1 is an S-nitrosoglutathione reductase
    • R.L. Bateman, D. Rauh, B. Tavshanjian, and K.M. Shokat Human carbonyl reductase 1 is an S-nitrosoglutathione reductase J. Biol. Chem. 283 2008 35756 35762
    • (2008) J. Biol. Chem. , vol.283 , pp. 35756-35762
    • Bateman, R.L.1    Rauh, D.2    Tavshanjian, B.3    Shokat, K.M.4
  • 61
    • 44449119080 scopus 로고    scopus 로고
    • Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins
    • M. Benhar, M.T. Forrester, D.T. Hess, and J.S. Stamler Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins Science 320 2008 1050 1054
    • (2008) Science , vol.320 , pp. 1050-1054
    • Benhar, M.1    Forrester, M.T.2    Hess, D.T.3    Stamler, J.S.4
  • 63
    • 77955576782 scopus 로고    scopus 로고
    • Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach
    • M. Benhar, J.W. Thompson, M.A. Moseley, and J.S. Stamler Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach Biochemistry 49 2010 6963 6969
    • (2010) Biochemistry , vol.49 , pp. 6963-6969
    • Benhar, M.1    Thompson, J.W.2    Moseley, M.A.3    Stamler, J.S.4
  • 64
    • 78049288138 scopus 로고    scopus 로고
    • Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation
    • P.T. Doulias, J.L. Greene, T.M. Greco, M. Tenopoulou, S.H. Seeholzer, R.L. Dunbrack, and H. Ischiropoulos Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation Proc. Natl. Acad. Sci. U. S. A. 107 2010 16958 16963
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 16958-16963
    • Doulias, P.T.1    Greene, J.L.2    Greco, T.M.3    Tenopoulou, M.4    Seeholzer, S.H.5    Dunbrack, R.L.6    Ischiropoulos, H.7
  • 65
    • 84907959197 scopus 로고    scopus 로고
    • A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation
    • S. Ben-Lulu, T. Ziv, A. Admon, P. Weisman-Shomer, and M. Benhar A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation Mol. Cell. Proteomics 13 2014 2573 2583
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 2573-2583
    • Ben-Lulu, S.1    Ziv, T.2    Admon, A.3    Weisman-Shomer, P.4    Benhar, M.5
  • 66
    • 84860875546 scopus 로고    scopus 로고
    • Thioredoxin-1 regulates cellular heme insertion by controlling S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase
    • R. Chakravarti, and D.J. Stuehr Thioredoxin-1 regulates cellular heme insertion by controlling S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase J. Biol. Chem. 287 2012 16179 16186
    • (2012) J. Biol. Chem. , vol.287 , pp. 16179-16186
    • Chakravarti, R.1    Stuehr, D.J.2
  • 67
    • 84881253817 scopus 로고    scopus 로고
    • Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana
    • M. Zaffagnini, S. Morisse, M. Bedhomme, C.H. Marchand, M. Festa, N. Rouhier, S.D. Lemaire, and P. Trost Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana J. Biol. Chem. 288 2013 22777 22789
    • (2013) J. Biol. Chem. , vol.288 , pp. 22777-22789
    • Zaffagnini, M.1    Morisse, S.2    Bedhomme, M.3    Marchand, C.H.4    Festa, M.5    Rouhier, N.6    Lemaire, S.D.7    Trost, P.8
  • 68
    • 84881043087 scopus 로고    scopus 로고
    • Glutathione and thioredoxin type 1 cooperatively denitrosate HepG2 cells-derived cytosolic S-nitrosoproteins
    • D.A. Stoyanovsky, M.J. Scott, and T.R. Billiar Glutathione and thioredoxin type 1 cooperatively denitrosate HepG2 cells-derived cytosolic S-nitrosoproteins Org. Biomol. Chem. 11 2013 4433 4437
    • (2013) Org. Biomol. Chem. , vol.11 , pp. 4433-4437
    • Stoyanovsky, D.A.1    Scott, M.J.2    Billiar, T.R.3
  • 70
    • 79958119821 scopus 로고    scopus 로고
    • Involvements of S-nitrosylation and denitrosylation in the production of polyphenols by Inonotus obliquus
    • W. Zheng, Y. Liu, S. Pan, W. Yuan, Y. Dai, and J. Wei Involvements of S-nitrosylation and denitrosylation in the production of polyphenols by Inonotus obliquus Appl. Microbiol. Biotechnol. 90 2011 1763 1772
    • (2011) Appl. Microbiol. Biotechnol. , vol.90 , pp. 1763-1772
    • Zheng, W.1    Liu, Y.2    Pan, S.3    Yuan, W.4    Dai, Y.5    Wei, J.6
  • 72
    • 79953182367 scopus 로고    scopus 로고
    • Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor
    • T. Ito, M. Yamakuchi, and C.J. Lowenstein Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor J. Biol. Chem. 286 2011 11179 11184
    • (2011) J. Biol. Chem. , vol.286 , pp. 11179-11184
    • Ito, T.1    Yamakuchi, M.2    Lowenstein, C.J.3
  • 74
    • 84893430760 scopus 로고    scopus 로고
    • Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor kappaB (NF-kappaB) activation
    • Z.T. Kelleher, Y. Sha, M.W. Foster, W.M. Foster, M.T. Forrester, and H.E. Marshall Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor kappaB (NF-kappaB) activation J. Biol. Chem. 289 2014 3066 3072
    • (2014) J. Biol. Chem. , vol.289 , pp. 3066-3072
    • Kelleher, Z.T.1    Sha, Y.2    Foster, M.W.3    Foster, W.M.4    Forrester, M.T.5    Marshall, H.E.6
  • 75
    • 49649112131 scopus 로고    scopus 로고
    • Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins
    • Y. Tada, S.H. Spoel, K. Pajerowska-Mukhtar, Z. Mou, J. Song, C. Wang, J. Zuo, and X. Dong Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins Science 321 2008 952 956
    • (2008) Science , vol.321 , pp. 952-956
    • Tada, Y.1    Spoel, S.H.2    Pajerowska-Mukhtar, K.3    Mou, Z.4    Song, J.5    Wang, C.6    Zuo, J.7    Dong, X.8
  • 77
    • 0942298136 scopus 로고    scopus 로고
    • Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa New insights into the specificity of thioredoxin function
    • W. Jeong, H.W. Yoon, S.R. Lee, and S.G. Rhee Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa New insights into the specificity of thioredoxin function J. Biol. Chem. 279 2004 3142 3150
    • (2004) J. Biol. Chem. , vol.279 , pp. 3142-3150
    • Jeong, W.1    Yoon, H.W.2    Lee, S.R.3    Rhee, S.G.4
  • 78
    • 84922391695 scopus 로고    scopus 로고
    • Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity
    • S. Kneeshaw, S. Gelineau, Y. Tada, G.J. Loake, and S.H. Spoel Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity Mol. Cell 56 2014 153 162
    • (2014) Mol. Cell , vol.56 , pp. 153-162
    • Kneeshaw, S.1    Gelineau, S.2    Tada, Y.3    Loake, G.J.4    Spoel, S.H.5
  • 79
    • 84873886579 scopus 로고    scopus 로고
    • Protein control of S-nitrosothiol reactivity: Interplay of antagonistic resonance structures
    • M.R. Talipov, and Q.K. Timerghazin Protein control of S-nitrosothiol reactivity: interplay of antagonistic resonance structures J. Phys. Chem. B 117 2013 1827 1837
    • (2013) J. Phys. Chem. B , vol.117 , pp. 1827-1837
    • Talipov, M.R.1    Timerghazin, Q.K.2
  • 80
    • 84870524092 scopus 로고    scopus 로고
    • A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO)
    • J.M. Fukuto, C.J. Cisneros, and R.L. Kinkade A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO) J. Inorg. Biochem. 118 2013 201 208
    • (2013) J. Inorg. Biochem. , vol.118 , pp. 201-208
    • Fukuto, J.M.1    Cisneros, C.J.2    Kinkade, R.L.3
  • 81
    • 70049083635 scopus 로고    scopus 로고
    • Protein S-nitrosylation in health and disease: A current perspective
    • M.W. Foster, D.T. Hess, and J.S. Stamler Protein S-nitrosylation in health and disease: a current perspective Trends Mol. Med. 15 2009 391 404
    • (2009) Trends Mol. Med. , vol.15 , pp. 391-404
    • Foster, M.W.1    Hess, D.T.2    Stamler, J.S.3
  • 83
    • 79952833794 scopus 로고    scopus 로고
    • Nitric oxide signaling and nitrosative stress in neurons: Role for S-nitrosylation
    • N. Shahani, and A. Sawa Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation Antioxid. Redox Signal. 14 2011 1493 1504
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 1493-1504
    • Shahani, N.1    Sawa, A.2
  • 85
    • 80052235110 scopus 로고    scopus 로고
    • Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: Relevance to adipose tissue dysfunction in obesity
    • H. Ovadia, Y. Haim, O. Nov, O. Almog, J. Kovsan, N. Bashan, M. Benhar, and A. Rudich Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity J. Biol. Chem. 286 2011 30433 30443
    • (2011) J. Biol. Chem. , vol.286 , pp. 30433-30443
    • Ovadia, H.1    Haim, Y.2    Nov, O.3    Almog, O.4    Kovsan, J.5    Bashan, N.6    Benhar, M.7    Rudich, A.8
  • 87
    • 0034653963 scopus 로고    scopus 로고
    • Protective effect of thioredoxin upon NO-mediated cell injury in THP1 monocytic human cells
    • P.J. Ferret, E. Soum, O. Negre, E.E. Wollman, and D. Fradelizi Protective effect of thioredoxin upon NO-mediated cell injury in THP1 monocytic human cells Biochem. J. 346 Pt 3 2000 759 765
    • (2000) Biochem. J. , vol.346 , pp. 759-765
    • Ferret, P.J.1    Soum, E.2    Negre, O.3    Wollman, E.E.4    Fradelizi, D.5
  • 88
    • 56049084898 scopus 로고    scopus 로고
    • Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP kinases
    • R.J. Arai, F.T. Ogata, W.L. Batista, H. Masutani, J. Yodoi, V. Debbas, O. Augusto, A. Stern, and H.P. Monteiro Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP kinases Toxicol. Appl. Pharmacol. 233 2008 227 237
    • (2008) Toxicol. Appl. Pharmacol. , vol.233 , pp. 227-237
    • Arai, R.J.1    Ogata, F.T.2    Batista, W.L.3    Masutani, H.4    Yodoi, J.5    Debbas, V.6    Augusto, O.7    Stern, A.8    Monteiro, H.P.9
  • 90
    • 77649290545 scopus 로고    scopus 로고
    • JS-K, a nitric oxide prodrug, has enhanced cytotoxicity in colon cancer cells with knockdown of thioredoxin reductase 1
    • K. Edes, P. Cassidy, P.J. Shami, and P.J. Moos JS-K, a nitric oxide prodrug, has enhanced cytotoxicity in colon cancer cells with knockdown of thioredoxin reductase 1 PLoS One 5 2010 e8786
    • (2010) PLoS One , vol.5
    • Edes, K.1    Cassidy, P.2    Shami, P.J.3    Moos, P.J.4
  • 92
    • 0037258943 scopus 로고    scopus 로고
    • Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori
    • S.L. Comtois, M.D. Gidley, and D.J. Kelly Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori Microbiology 149 2003 121 129
    • (2003) Microbiology , vol.149 , pp. 121-129
    • Comtois, S.L.1    Gidley, M.D.2    Kelly, D.J.3
  • 93
    • 22644440257 scopus 로고    scopus 로고
    • Function of the thioredoxin proteins in Cryptococcus neoformans during stress or virulence and regulation by putative transcriptional modulators
    • T.A. Missall, and J.K. Lodge Function of the thioredoxin proteins in Cryptococcus neoformans during stress or virulence and regulation by putative transcriptional modulators Mol. Microbiol. 57 2005 847 858
    • (2005) Mol. Microbiol. , vol.57 , pp. 847-858
    • Missall, T.A.1    Lodge, J.K.2
  • 94
    • 58849087683 scopus 로고    scopus 로고
    • Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells
    • A.J. Potter, S.P. Kidd, J.L. Edwards, M.L. Falsetta, M.A. Apicella, M.P. Jennings, and A.G. McEwan Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells J. Infect. Dis. 199 2009 227 235
    • (2009) J. Infect. Dis. , vol.199 , pp. 227-235
    • Potter, A.J.1    Kidd, S.P.2    Edwards, J.L.3    Falsetta, M.L.4    Apicella, M.A.5    Jennings, M.P.6    McEwan, A.G.7
  • 96
    • 19444375216 scopus 로고    scopus 로고
    • Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
    • S.G. Rhee, H.Z. Chae, and K. Kim Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling Free Radic. Biol. Med. 38 2005 1543 1552
    • (2005) Free Radic. Biol. Med. , vol.38 , pp. 1543-1552
    • Rhee, S.G.1    Chae, H.Z.2    Kim, K.3
  • 97
    • 0030238701 scopus 로고    scopus 로고
    • Nitric oxide-induced inhibition of lung endothelial cell nitric oxide synthase via interaction with allosteric thiols: Role of thioredoxin in regulation of catalytic activity
    • J.M. Patel, J. Zhang, and E.R. Block Nitric oxide-induced inhibition of lung endothelial cell nitric oxide synthase via interaction with allosteric thiols: role of thioredoxin in regulation of catalytic activity Am. J. Respir. Cell Mol. Biol. 15 1996 410 419
    • (1996) Am. J. Respir. Cell Mol. Biol. , vol.15 , pp. 410-419
    • Patel, J.M.1    Zhang, J.2    Block, E.R.3
  • 98
    • 0032134429 scopus 로고    scopus 로고
    • Thioredoxin overexpression prevents NO-induced reduction of NO synthase activity in lung endothelial cells
    • J. Zhang, Y.D. Li, J.M. Patel, and E.R. Block Thioredoxin overexpression prevents NO-induced reduction of NO synthase activity in lung endothelial cells Am. J. Physiol. 275 1998 L288 L293
    • (1998) Am. J. Physiol. , vol.275 , pp. L288-L293
    • Zhang, J.1    Li, Y.D.2    Patel, J.M.3    Block, E.R.4
  • 99
    • 1442330336 scopus 로고    scopus 로고
    • S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity
    • K. Ravi, L.A. Brennan, S. Levic, P.A. Ross, and S.M. Black S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity Proc. Natl. Acad. Sci. U. S. A. 101 2004 2619 2624
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 2619-2624
    • Ravi, K.1    Brennan, L.A.2    Levic, S.3    Ross, P.A.4    Black, S.M.5
  • 100
    • 38349141262 scopus 로고    scopus 로고
    • Identification of the cysteine nitrosylation sites in human endothelial nitric oxide synthase
    • M. Tummala, V. Ryzhov, K. Ravi, and S.M. Black Identification of the cysteine nitrosylation sites in human endothelial nitric oxide synthase DNA Cell Biol. 27 2008 25 33
    • (2008) DNA Cell Biol. , vol.27 , pp. 25-33
    • Tummala, M.1    Ryzhov, V.2    Ravi, K.3    Black, S.M.4
  • 101
    • 20444409884 scopus 로고    scopus 로고
    • Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells
    • P.A. Erwin, A.J. Lin, D.E. Golan, and T. Michel Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells J. Biol. Chem. 280 2005 19888 19894
    • (2005) J. Biol. Chem. , vol.280 , pp. 19888-19894
    • Erwin, P.A.1    Lin, A.J.2    Golan, D.E.3    Michel, T.4
  • 102
    • 33644864135 scopus 로고    scopus 로고
    • Subcellular targeting and differential S-nitrosylation of endothelial nitric-oxide synthase
    • P.A. Erwin, D.A. Mitchell, J. Sartoretto, M.A. Marletta, and T. Michel Subcellular targeting and differential S-nitrosylation of endothelial nitric-oxide synthase J. Biol. Chem. 281 2006 151 157
    • (2006) J. Biol. Chem. , vol.281 , pp. 151-157
    • Erwin, P.A.1    Mitchell, D.A.2    Sartoretto, J.3    Marletta, M.A.4    Michel, T.5
  • 103
    • 73849147582 scopus 로고    scopus 로고
    • Inhibition of thioredoxin reductase 1 by caveolin 1 promotes stress-induced premature senescence
    • D. Volonte, and F. Galbiati Inhibition of thioredoxin reductase 1 by caveolin 1 promotes stress-induced premature senescence EMBO Rep. 10 2009 1334 1340
    • (2009) EMBO Rep. , vol.10 , pp. 1334-1340
    • Volonte, D.1    Galbiati, F.2
  • 105
    • 84871691679 scopus 로고    scopus 로고
    • N-methyl-D-aspartate receptor-dependent denitrosylation of neuronal nitric oxide synthase increase the enzyme activity
    • Z.W. Qu, W.Y. Miao, S.Q. Hu, C. Li, X.L. Zhuo, Y.Y. Zong, Y.P. Wu, and G.Y. Zhang N-methyl-D-aspartate receptor-dependent denitrosylation of neuronal nitric oxide synthase increase the enzyme activity PLoS One 7 2012 e52788
    • (2012) PLoS One , vol.7
    • Qu, Z.W.1    Miao, W.Y.2    Hu, S.Q.3    Li, C.4    Zhuo, X.L.5    Zong, Y.Y.6    Wu, Y.P.7    Zhang, G.Y.8
  • 106
    • 80051720813 scopus 로고    scopus 로고
    • Heme-dependent activation of neuronal nitric oxide synthase by cytosol is due to an Hsp70-dependent, thioredoxin-mediated thiol-disulfide interchange in the heme/substrate binding cleft
    • Y. Morishima, M. Lau, H.M. Peng, Y. Miyata, J.E. Gestwicki, W.B. Pratt, and Y. Osawa Heme-dependent activation of neuronal nitric oxide synthase by cytosol is due to an Hsp70-dependent, thioredoxin-mediated thiol-disulfide interchange in the heme/substrate binding cleft Biochemistry 50 2011 7146 7156
    • (2011) Biochemistry , vol.50 , pp. 7146-7156
    • Morishima, Y.1    Lau, M.2    Peng, H.M.3    Miyata, Y.4    Gestwicki, J.E.5    Pratt, W.B.6    Osawa, Y.7
  • 108
    • 84870715491 scopus 로고    scopus 로고
    • Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation
    • R. Sengupta, and A. Holmgren Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation Antioxid. Redox Signal. 18 2013 259 269
    • (2013) Antioxid. Redox Signal. , vol.18 , pp. 259-269
    • Sengupta, R.1    Holmgren, A.2
  • 109
    • 0036798856 scopus 로고    scopus 로고
    • Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69
    • J. Haendeler, J. Hoffmann, V. Tischler, B.C. Berk, A.M. Zeiher, and S. Dimmeler Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69 Nat. Cell Biol. 4 2002 743 749
    • (2002) Nat. Cell Biol. , vol.4 , pp. 743-749
    • Haendeler, J.1    Hoffmann, J.2    Tischler, V.3    Berk, B.C.4    Zeiher, A.M.5    Dimmeler, S.6
  • 110
    • 33846783114 scopus 로고    scopus 로고
    • Buried S-nitrosocysteine revealed in crystal structures of human thioredoxin
    • A. Weichsel, J.L. Brailey, and W.R. Montfort Buried S-nitrosocysteine revealed in crystal structures of human thioredoxin Biochemistry 46 2007 1219 1227
    • (2007) Biochemistry , vol.46 , pp. 1219-1227
    • Weichsel, A.1    Brailey, J.L.2    Montfort, W.R.3
  • 111
    • 77956366486 scopus 로고    scopus 로고
    • Crystal structure of human thioredoxin revealing an unraveled helix and exposed S-nitrosation site
    • A. Weichsel, M. Kem, and W.R. Montfort Crystal structure of human thioredoxin revealing an unraveled helix and exposed S-nitrosation site Protein Sci. 19 2010 1801 1806
    • (2010) Protein Sci. , vol.19 , pp. 1801-1806
    • Weichsel, A.1    Kem, M.2    Montfort, W.R.3
  • 112
    • 52049087608 scopus 로고    scopus 로고
    • Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues
    • S.I. Hashemy, and A. Holmgren Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues J. Biol. Chem. 283 2008 21890 21898
    • (2008) J. Biol. Chem. , vol.283 , pp. 21890-21898
    • Hashemy, S.I.1    Holmgren, A.2
  • 115
    • 36048960679 scopus 로고    scopus 로고
    • Nuclear redox-signaling is essential for apoptosis inhibition in endothelial cells-important role for nuclear thioredoxin-1
    • P. Schroeder, R. Popp, B. Wiegand, J. Altschmied, and J. Haendeler Nuclear redox-signaling is essential for apoptosis inhibition in endothelial cells-important role for nuclear thioredoxin-1 Arterioscler. Thromb. Vasc. Biol. 27 2007 2325 2331
    • (2007) Arterioscler. Thromb. Vasc. Biol. , vol.27 , pp. 2325-2331
    • Schroeder, P.1    Popp, R.2    Wiegand, B.3    Altschmied, J.4    Haendeler, J.5
  • 116
    • 33644818614 scopus 로고    scopus 로고
    • Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine
    • D.A. Mitchell, and M.A. Marletta Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine Nat. Chem. Biol. 1 2005 154 158
    • (2005) Nat. Chem. Biol. , vol.1 , pp. 154-158
    • Mitchell, D.A.1    Marletta, M.A.2
  • 117
    • 34547427294 scopus 로고    scopus 로고
    • Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells
    • D.A. Mitchell, S.U. Morton, N.B. Fernhoff, and M.A. Marletta Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells Proc. Natl. Acad. Sci. U. S. A. 104 2007 11609 11614
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 11609-11614
    • Mitchell, D.A.1    Morton, S.U.2    Fernhoff, N.B.3    Marletta, M.A.4
  • 118
    • 84882608622 scopus 로고    scopus 로고
    • GluR6-FasL-Trx2 mediates denitrosylation and activation of procaspase-3 in cerebral ischemia/reperfusion in rats
    • N. Sun, J.R. Hao, X.Y. Li, X.H. Yin, Y.Y. Zong, G.Y. Zhang, and C. Gao GluR6-FasL-Trx2 mediates denitrosylation and activation of procaspase-3 in cerebral ischemia/reperfusion in rats Cell Death Dis. 4 2013 e771
    • (2013) Cell Death Dis. , vol.4
    • Sun, N.1    Hao, J.R.2    Li, X.Y.3    Yin, X.H.4    Zong, Y.Y.5    Zhang, G.Y.6    Gao, C.7
  • 119
    • 84929174195 scopus 로고    scopus 로고
    • Melanoma differentiation associated gene-7/interleukin-24 induces caspase-3 denitrosylation to facilitate the activation of cancer cell apoptosis
    • H. Tian, D.F. Zhang, B.F. Zhang, H.Z. Li, Q. Zhang, L.T. Li, D.S. Pei, and J.N. Zheng Melanoma differentiation associated gene-7/interleukin-24 induces caspase-3 denitrosylation to facilitate the activation of cancer cell apoptosis J. Interf. Cytokine Res. 35 2015 157 167
    • (2015) J. Interf. Cytokine Res. , vol.35 , pp. 157-167
    • Tian, H.1    Zhang, D.F.2    Zhang, B.F.3    Li, H.Z.4    Zhang, Q.5    Li, L.T.6    Pei, D.S.7    Zheng, J.N.8
  • 122
    • 80051968577 scopus 로고    scopus 로고
    • Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells
    • Y. Liu, Y. Ma, R. Wang, C. Xia, R. Zhang, K. Lian, R. Luan, L. Sun, L. Yang, W.B. Lau, H. Wang, and L. Tao Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells Antioxid. Redox Signal. 15 2011 1769 1778
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 1769-1778
    • Liu, Y.1    Ma, Y.2    Wang, R.3    Xia, C.4    Zhang, R.5    Lian, K.6    Luan, R.7    Sun, L.8    Yang, L.9    Lau, W.B.10    Wang, H.11    Tao, L.12
  • 124
    • 0036249958 scopus 로고    scopus 로고
    • Induction of thioredoxin reductase gene expression by peroxynitrite in human umbilical vein endothelial cells
    • Y.S. Park, N. Fujiwara, Y.H. Koh, Y. Miyamoto, K. Suzuki, K. Honke, and N. Taniguchi Induction of thioredoxin reductase gene expression by peroxynitrite in human umbilical vein endothelial cells Biol. Chem. 383 2002 683 691
    • (2002) Biol. Chem. , vol.383 , pp. 683-691
    • Park, Y.S.1    Fujiwara, N.2    Koh, Y.H.3    Miyamoto, Y.4    Suzuki, K.5    Honke, K.6    Taniguchi, N.7
  • 125
    • 84937778893 scopus 로고    scopus 로고
    • Redox regulation of metabolic and signaling pathways by thioredoxin and glutaredoxin in NOS-3 overexpressing hepatoblastoma cells
    • R. Gonzalez, M.J. Lopez-Grueso, J. Muntane, J.A. Barcena, and C.A. Padilla Redox regulation of metabolic and signaling pathways by thioredoxin and glutaredoxin in NOS-3 overexpressing hepatoblastoma cells Redox Biol. 6 2015 122 134
    • (2015) Redox Biol. , vol.6 , pp. 122-134
    • Gonzalez, R.1    Lopez-Grueso, M.J.2    Muntane, J.3    Barcena, J.A.4    Padilla, C.A.5
  • 126
    • 84942279831 scopus 로고    scopus 로고
    • Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis
    • N. Correa-Aragunde, F.J. Cejudo, and L. Lamattina Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis Ann. Bot. 2015
    • (2015) Ann. Bot.
    • Correa-Aragunde, N.1    Cejudo, F.J.2    Lamattina, L.3
  • 127
    • 84893186874 scopus 로고    scopus 로고
    • Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization
    • F.T. Ogata, W.L. Batista, A. Sartori, T.F. Gesteira, H. Masutani, R.J. Arai, J. Yodoi, A. Stern, and H.P. Monteiro Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization PLoS One 8 2013 e84588
    • (2013) PLoS One , vol.8
    • Ogata, F.T.1    Batista, W.L.2    Sartori, A.3    Gesteira, T.F.4    Masutani, H.5    Arai, R.J.6    Yodoi, J.7    Stern, A.8    Monteiro, H.P.9
  • 129
    • 84920072830 scopus 로고    scopus 로고
    • Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents
    • G. Kronenfeld, R. Engelman, P. Weisman-Shomer, D. Atlas, and M. Benhar Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents Free Radic. Biol. Med. 79 2015 138 146
    • (2015) Free Radic. Biol. Med. , vol.79 , pp. 138-146
    • Kronenfeld, G.1    Engelman, R.2    Weisman-Shomer, P.3    Atlas, D.4    Benhar, M.5
  • 130
    • 58149182297 scopus 로고    scopus 로고
    • Nitric oxide donors: Novel cancer therapeutics (review)
    • S. Huerta, S. Chilka, and B. Bonavida Nitric oxide donors: novel cancer therapeutics (review) Int. J. Oncol. 33 2008 909 927
    • (2008) Int. J. Oncol. , vol.33 , pp. 909-927
    • Huerta, S.1    Chilka, S.2    Bonavida, B.3
  • 131
    • 33751178410 scopus 로고    scopus 로고
    • The thioredoxin system in cancer
    • E.S. Arner, and A. Holmgren The thioredoxin system in cancer Semin. Cancer Biol. 16 2006 420 426
    • (2006) Semin. Cancer Biol. , vol.16 , pp. 420-426
    • Arner, E.S.1    Holmgren, A.2
  • 132
    • 84865773318 scopus 로고    scopus 로고
    • Thioredoxin reductase linked to cytoskeleton by focal adhesion kinase reverses actin S-nitrosylation and restores neutrophil beta (2) integrin function
    • S.R. Thom, V.M. Bhopale, T.N. Milovanova, M. Yang, and M. Bogush Thioredoxin reductase linked to cytoskeleton by focal adhesion kinase reverses actin S-nitrosylation and restores neutrophil beta (2) integrin function J. Biol. Chem. 287 2012 30346 30357
    • (2012) J. Biol. Chem. , vol.287 , pp. 30346-30357
    • Thom, S.R.1    Bhopale, V.M.2    Milovanova, T.N.3    Yang, M.4    Bogush, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.