-
1
-
-
84884500573
-
Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: a cohort study
-
Appleton S.L., et al. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: a cohort study. Diabetes Care 2013, 36:2388-2394.
-
(2013)
Diabetes Care
, vol.36
, pp. 2388-2394
-
-
Appleton, S.L.1
-
2
-
-
80053018598
-
Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals
-
Voulgari C., et al. Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J. Am. Coll. Cardiol. 2011, 58:1343-1350.
-
(2011)
J. Am. Coll. Cardiol.
, vol.58
, pp. 1343-1350
-
-
Voulgari, C.1
-
3
-
-
84872131467
-
'Metabolically healthy obesity': origins and implications
-
Denis G.V., Obin M.S. 'Metabolically healthy obesity': origins and implications. Mol. Aspects Med. 2013, 34:59-70.
-
(2013)
Mol. Aspects Med.
, vol.34
, pp. 59-70
-
-
Denis, G.V.1
Obin, M.S.2
-
5
-
-
84870592105
-
Sex differences in human adipose tissues - the biology of pear shape
-
Karastergiou K., et al. Sex differences in human adipose tissues - the biology of pear shape. Biol. Sex Differ. 2012, 3:13.
-
(2012)
Biol. Sex Differ.
, vol.3
, pp. 13
-
-
Karastergiou, K.1
-
7
-
-
85047690933
-
Splanchnic lipolysis in human obesity
-
Nielsen S., et al. Splanchnic lipolysis in human obesity. J. Clin. Invest. 2004, 113:1582-1588.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 1582-1588
-
-
Nielsen, S.1
-
8
-
-
42649144463
-
Beneficial effects of subcutaneous fat transplantation on metabolism
-
Tran T.T., et al. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008, 7:410-420.
-
(2008)
Cell Metab.
, vol.7
, pp. 410-420
-
-
Tran, T.T.1
-
9
-
-
84931577296
-
Subcutaneous fat transplantation alleviates diet-induced glucose intolerance and inflammation in mice
-
Hocking S.L., et al. Subcutaneous fat transplantation alleviates diet-induced glucose intolerance and inflammation in mice. Diabetologia 2015, 58:1587-1600.
-
(2015)
Diabetologia
, vol.58
, pp. 1587-1600
-
-
Hocking, S.L.1
-
10
-
-
64649104155
-
Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism
-
Macotela Y., et al. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 2009, 58:803-812.
-
(2009)
Diabetes
, vol.58
, pp. 803-812
-
-
Macotela, Y.1
-
11
-
-
33646271627
-
Evidence for a role of developmental genes in the origin of obesity and body fat distribution
-
Gesta S., et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:6676-6681.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 6676-6681
-
-
Gesta, S.1
-
12
-
-
84872066769
-
Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots
-
Karastergiou K., et al. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J. Clin. Endocrinol. Metab. 2013, 98:362-371.
-
(2013)
J. Clin. Endocrinol. Metab.
, vol.98
, pp. 362-371
-
-
Karastergiou, K.1
-
13
-
-
84897583271
-
Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source
-
Chau Y.Y., et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 2014, 16:367-375.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 367-375
-
-
Chau, Y.Y.1
-
14
-
-
84919727190
-
Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis
-
Jiang Y., et al. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep. 2014, 9:1007-1022.
-
(2014)
Cell Rep.
, vol.9
, pp. 1007-1022
-
-
Jiang, Y.1
-
15
-
-
84887502374
-
Tracking adipogenesis during white adipose tissue development, expansion and regeneration
-
Wang Q.A., et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 2013, 19:1338-1344.
-
(2013)
Nat. Med.
, vol.19
, pp. 1338-1344
-
-
Wang, Q.A.1
-
16
-
-
84872144478
-
Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications
-
Lee M.J., et al. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med. 2013, 34:1-11.
-
(2013)
Mol. Aspects Med.
, vol.34
, pp. 1-11
-
-
Lee, M.J.1
-
17
-
-
79957916782
-
Adipose tissue remodeling and obesity
-
Sun K., et al. Adipose tissue remodeling and obesity. J. Clin. Invest. 2011, 121:2094-2101.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 2094-2101
-
-
Sun, K.1
-
18
-
-
84911971924
-
Adipocyte dysfunction, inflammation and metabolic syndrome
-
Kloting N., Bluher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15:277-287.
-
(2014)
Rev. Endocr. Metab. Disord.
, vol.15
, pp. 277-287
-
-
Kloting, N.1
Bluher, M.2
-
19
-
-
78751618979
-
Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity
-
Gealekman O., et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 2011, 123:186-194.
-
(2011)
Circulation
, vol.123
, pp. 186-194
-
-
Gealekman, O.1
-
20
-
-
78751649211
-
Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity
-
Hardy O.T., et al. Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg. Obes. Relat. Dis. 2011, 7:60-67.
-
(2011)
Surg. Obes. Relat. Dis.
, vol.7
, pp. 60-67
-
-
Hardy, O.T.1
-
21
-
-
84933673558
-
Insulin resistance and impaired adipogenesis
-
Gustafson B., et al. Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab. 2015, 26:193-200.
-
(2015)
Trends Endocrinol. Metab.
, vol.26
, pp. 193-200
-
-
Gustafson, B.1
-
22
-
-
84887391597
-
Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4
-
Gustafson B., et al. Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4. Diabetes 2013, 62:2997-3004.
-
(2013)
Diabetes
, vol.62
, pp. 2997-3004
-
-
Gustafson, B.1
-
23
-
-
70350462403
-
Inflammation and impaired adipogenesis in hypertrophic obesity in man
-
Gustafson B., et al. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E999-E1003.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
, pp. E999-E1003
-
-
Gustafson, B.1
-
24
-
-
84897115531
-
On ceramides, other sphingolipids and impaired glucose homeostasis
-
Larsen P.J., Tennagels N. On ceramides, other sphingolipids and impaired glucose homeostasis. Mol. Metab. 2014, 3:252-260.
-
(2014)
Mol. Metab.
, vol.3
, pp. 252-260
-
-
Larsen, P.J.1
Tennagels, N.2
-
25
-
-
84901944641
-
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes
-
Perry R.J., et al. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014, 510:84-91.
-
(2014)
Nature
, vol.510
, pp. 84-91
-
-
Perry, R.J.1
-
27
-
-
84921984549
-
Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction
-
Sun K., et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 2014, 5:3485.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3485
-
-
Sun, K.1
-
28
-
-
84858288122
-
What causes the insulin resistance underlying obesity?
-
Hardy O.T., et al. What causes the insulin resistance underlying obesity?. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19:81-87.
-
(2012)
Curr. Opin. Endocrinol. Diabetes Obes.
, vol.19
, pp. 81-87
-
-
Hardy, O.T.1
-
29
-
-
0027459878
-
Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance
-
Hotamisligil G.S., et al. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993, 259:87-91.
-
(1993)
Science
, vol.259
, pp. 87-91
-
-
Hotamisligil, G.S.1
-
30
-
-
84878785347
-
Immunological goings-on in visceral adipose tissue
-
Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 2013, 17:851-859.
-
(2013)
Cell Metab.
, vol.17
, pp. 851-859
-
-
Mathis, D.1
-
31
-
-
68349148211
-
Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
-
Feuerer M., et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009, 15:930-939.
-
(2009)
Nat. Med.
, vol.15
, pp. 930-939
-
-
Feuerer, M.1
-
32
-
-
84880497243
-
Quantification of adipose tissue leukocytosis in obesity
-
Grant R., et al. Quantification of adipose tissue leukocytosis in obesity. Methods Mol. Biol. 2013, 1040:195-209.
-
(2013)
Methods Mol. Biol.
, vol.1040
, pp. 195-209
-
-
Grant, R.1
-
33
-
-
36849012057
-
Adipocyte death, adipose tissue remodeling, and obesity complications
-
Strissel K.J., et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007, 56:2910-2918.
-
(2007)
Diabetes
, vol.56
, pp. 2910-2918
-
-
Strissel, K.J.1
-
34
-
-
84925273129
-
Adipose tissue as an immunological organ
-
Grant R.W., Dixit V.D. Adipose tissue as an immunological organ. Obesity (Silver Spring) 2015, 23:512-518.
-
(2015)
Obesity (Silver Spring)
, vol.23
, pp. 512-518
-
-
Grant, R.W.1
Dixit, V.D.2
-
35
-
-
84904044334
-
Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling
-
Wernstedt Asterholm I., et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 2014, 20:103-118.
-
(2014)
Cell Metab.
, vol.20
, pp. 103-118
-
-
Wernstedt Asterholm, I.1
-
36
-
-
84904392112
-
Macrophages, immunity, and metabolic disease
-
McNelis J.C., Olefsky J.M. Macrophages, immunity, and metabolic disease. Immunity 2014, 41:36-48.
-
(2014)
Immunity
, vol.41
, pp. 36-48
-
-
McNelis, J.C.1
Olefsky, J.M.2
-
37
-
-
0348222671
-
Inflammation: the link between insulin resistance, obesity and diabetes
-
Dandona P., et al. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25:4-7.
-
(2004)
Trends Immunol.
, vol.25
, pp. 4-7
-
-
Dandona, P.1
-
38
-
-
35748974230
-
Mesothelial cells
-
Yung S., Chan T.M. Mesothelial cells. Perit. Dial. Int. 2007, 27(Suppl. 2):S110-S115.
-
(2007)
Perit. Dial. Int.
, vol.27
, pp. S110-S115
-
-
Yung, S.1
Chan, T.M.2
-
39
-
-
84903791247
-
EGF-induced adipose tissue mesothelial cells undergo functional vascular smooth muscle differentiation
-
Lachaud C.C., et al. EGF-induced adipose tissue mesothelial cells undergo functional vascular smooth muscle differentiation. Cell Death Dis. 2014, 5:e1304.
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1304
-
-
Lachaud, C.C.1
-
41
-
-
84874529084
-
Mesothelial cell: a multifaceted model of aging
-
Ksiazek K. Mesothelial cell: a multifaceted model of aging. Ageing Res. Rev. 2013, 12:595-604.
-
(2013)
Ageing Res. Rev.
, vol.12
, pp. 595-604
-
-
Ksiazek, K.1
-
42
-
-
84930682226
-
Mesothelial cells in tissue repair and fibrosis
-
Mutsaers S.E., et al. Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 2015, 6:113.
-
(2015)
Front. Pharmacol.
, vol.6
, pp. 113
-
-
Mutsaers, S.E.1
-
43
-
-
84861028443
-
Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells
-
Yung S., Chan T.M. Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm. 2012, 2012:484167.
-
(2012)
Mediators Inflamm.
, vol.2012
, pp. 484167
-
-
Yung, S.1
Chan, T.M.2
-
44
-
-
84908168039
-
Peritoneal mesothelium promotes the progression of ovarian cancer cells in vitro and in a mice xenograft model in vivo
-
Mikula-Pietrasik J., et al. Peritoneal mesothelium promotes the progression of ovarian cancer cells in vitro and in a mice xenograft model in vivo. Cancer Lett. 2014, 355:310-315.
-
(2014)
Cancer Lett.
, vol.355
, pp. 310-315
-
-
Mikula-Pietrasik, J.1
-
45
-
-
83155180328
-
Intra-abdominal adhesions: cellular mechanisms and strategies for prevention
-
Maciver A.H., et al. Intra-abdominal adhesions: cellular mechanisms and strategies for prevention. Int. J. Surg. 2011, 9:589-594.
-
(2011)
Int. J. Surg.
, vol.9
, pp. 589-594
-
-
Maciver, A.H.1
-
46
-
-
79953070098
-
Peritoneal mesothelial hyperplasia associated with gynaecological disease: a potential diagnostic pitfall that is commonly associated with endometriosis
-
Oparka R., et al. Peritoneal mesothelial hyperplasia associated with gynaecological disease: a potential diagnostic pitfall that is commonly associated with endometriosis. J. Clin. Pathol. 2011, 64:313-318.
-
(2011)
J. Clin. Pathol.
, vol.64
, pp. 313-318
-
-
Oparka, R.1
-
47
-
-
0024614119
-
Cobblestone monolayer cells from human omental adipose tissue are possibly mesothelial, not endothelial
-
Takahashi K., et al. Cobblestone monolayer cells from human omental adipose tissue are possibly mesothelial, not endothelial. In Vitro Cell. Dev. Biol. 1989, 25:109-111.
-
(1989)
In Vitro Cell. Dev. Biol.
, vol.25
, pp. 109-111
-
-
Takahashi, K.1
-
48
-
-
38149044024
-
Contribution of mesothelial cells in the expression of inflammatory-related factors in omental adipose tissue of obese subjects
-
Darimont C., et al. Contribution of mesothelial cells in the expression of inflammatory-related factors in omental adipose tissue of obese subjects. Int. J. Obes. (Lond.) 2008, 32:112-120.
-
(2008)
Int. J. Obes. (Lond.)
, vol.32
, pp. 112-120
-
-
Darimont, C.1
-
49
-
-
0027733690
-
Human peritoneal mesothelial cells synthesize interleukin-8. Synergistic induction by interleukin-1 beta and tumor necrosis factor-alpha
-
Topley N., et al. Human peritoneal mesothelial cells synthesize interleukin-8. Synergistic induction by interleukin-1 beta and tumor necrosis factor-alpha. Am. J. Pathol. 1993, 142:1876-1886.
-
(1993)
Am. J. Pathol.
, vol.142
, pp. 1876-1886
-
-
Topley, N.1
-
50
-
-
0028158160
-
Interleukin-8 during peritonitis in patients treated with CAPD; an in-vivo model of acute inflammation
-
Zemel D., et al. Interleukin-8 during peritonitis in patients treated with CAPD; an in-vivo model of acute inflammation. Nephrol. Dial. Transplant. 1994, 9:169-174.
-
(1994)
Nephrol. Dial. Transplant.
, vol.9
, pp. 169-174
-
-
Zemel, D.1
-
51
-
-
33748099699
-
Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters
-
Kim C.S., et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int. J. Obes. (Lond.) 2006, 30:1347-1355.
-
(2006)
Int. J. Obes. (Lond.)
, vol.30
, pp. 1347-1355
-
-
Kim, C.S.1
-
52
-
-
0348048487
-
Higher production of IL-8 in visceral vs. subcutaneous adipose tissue. Implication of nonadipose cells in adipose tissue
-
Bruun J.M., et al. Higher production of IL-8 in visceral vs. subcutaneous adipose tissue. Implication of nonadipose cells in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2004, 286:E8-E13.
-
(2004)
Am. J. Physiol. Endocrinol. Metab.
, vol.286
, pp. E8-E13
-
-
Bruun, J.M.1
-
53
-
-
0242580711
-
Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects
-
Rotter V., et al. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 2003, 278:45777-45784.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 45777-45784
-
-
Rotter, V.1
-
54
-
-
0027298546
-
Human peritoneal mesothelial cells synthesize interleukin-6: induction by IL-1 beta and TNF alpha
-
Topley N., et al. Human peritoneal mesothelial cells synthesize interleukin-6: induction by IL-1 beta and TNF alpha. Kidney Int. 1993, 43:226-233.
-
(1993)
Kidney Int.
, vol.43
, pp. 226-233
-
-
Topley, N.1
-
55
-
-
33750584214
-
TLR4 links innate immunity and fatty acid-induced insulin resistance
-
Shi H., et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 2006, 116:3015-3025.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 3015-3025
-
-
Shi, H.1
-
56
-
-
82255164274
-
Human peritoneal mesothelial cells respond to bacterial ligands through a specific subset of toll-like receptors
-
Colmont C.S., et al. Human peritoneal mesothelial cells respond to bacterial ligands through a specific subset of toll-like receptors. Nephrol. Dial. Transplant. 2011, 26:4079-4090.
-
(2011)
Nephrol. Dial. Transplant.
, vol.26
, pp. 4079-4090
-
-
Colmont, C.S.1
-
57
-
-
1942442285
-
Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: the role of toll-like receptor 4
-
Kato S., et al. Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: the role of toll-like receptor 4. J. Am. Soc. Nephrol. 2004, 15:1289-1299.
-
(2004)
J. Am. Soc. Nephrol.
, vol.15
, pp. 1289-1299
-
-
Kato, S.1
-
58
-
-
84894094878
-
- intraperitoneal mesothelial-like cells inhibit T cell activation by production of arginase I
-
- intraperitoneal mesothelial-like cells inhibit T cell activation by production of arginase I. Cell. Immunol. 2014, 288:8-14.
-
(2014)
Cell. Immunol.
, vol.288
, pp. 8-14
-
-
Kitayama, J.1
-
59
-
-
0037472881
-
Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells
-
Yanez-Mo M., et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 2003, 348:403-413.
-
(2003)
N. Engl. J. Med.
, vol.348
, pp. 403-413
-
-
Yanez-Mo, M.1
-
60
-
-
34447249074
-
Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions
-
Aroeira L.S., et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 2007, 18:2004-2013.
-
(2007)
J. Am. Soc. Nephrol.
, vol.18
, pp. 2004-2013
-
-
Aroeira, L.S.1
-
61
-
-
84870621228
-
Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature
-
Rinkevich Y., et al. Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat. Cell Biol. 2012, 14:1251-1260.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1251-1260
-
-
Rinkevich, Y.1
-
62
-
-
79952240154
-
Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver
-
Asahina K., et al. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 2011, 53:983-995.
-
(2011)
Hepatology
, vol.53
, pp. 983-995
-
-
Asahina, K.1
-
63
-
-
84881619845
-
Wt1-expressing progenitors contribute to multiple tissues in the developing lung
-
Cano E., et al. Wt1-expressing progenitors contribute to multiple tissues in the developing lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305:L322-L332.
-
(2013)
Am. J. Physiol. Lung Cell. Mol. Physiol.
, vol.305
, pp. L322-L332
-
-
Cano, E.1
-
64
-
-
84873916949
-
Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos
-
Carmona R., et al. Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos. PLoS ONE 2013, 8:e55890.
-
(2013)
PLoS ONE
, vol.8
, pp. e55890
-
-
Carmona, R.1
-
65
-
-
73349108404
-
Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin
-
Martinez-Estrada O.M., et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat. Genet. 2010, 42:89-93.
-
(2010)
Nat. Genet.
, vol.42
, pp. 89-93
-
-
Martinez-Estrada, O.M.1
-
66
-
-
55949133275
-
Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development
-
Que J., et al. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16626-16630.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 16626-16630
-
-
Que, J.1
-
67
-
-
29644432271
-
The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature
-
Wilm B., et al. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 2005, 132:5317-5328.
-
(2005)
Development
, vol.132
, pp. 5317-5328
-
-
Wilm, B.1
-
68
-
-
84885180828
-
Fibrosis and adipose tissue dysfunction
-
Sun K., et al. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013, 18:470-477.
-
(2013)
Cell Metab.
, vol.18
, pp. 470-477
-
-
Sun, K.1
-
69
-
-
84906239136
-
ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue
-
Kim M., et al. ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue. Mol. Metab. 2014, 3:642-651.
-
(2014)
Mol. Metab.
, vol.3
, pp. 642-651
-
-
Kim, M.1
-
70
-
-
84893847182
-
Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon Freund's adjuvant treatment
-
Balogh P., et al. Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon Freund's adjuvant treatment. PLoS ONE 2013, 8:e79508.
-
(2013)
PLoS ONE
, vol.8
, pp. e79508
-
-
Balogh, P.1
-
71
-
-
84857658525
-
Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies
-
Billon N., Dani C. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev. 2012, 8:55-66.
-
(2012)
Stem Cell Rev.
, vol.8
, pp. 55-66
-
-
Billon, N.1
Dani, C.2
-
72
-
-
84891867283
-
Weighing in on adipocyte precursors
-
Berry R., et al. Weighing in on adipocyte precursors. Cell Metab. 2014, 19:8-20.
-
(2014)
Cell Metab.
, vol.19
, pp. 8-20
-
-
Berry, R.1
-
73
-
-
50049122271
-
PRDM16 controls a brown fat/skeletal muscle switch
-
Seale P., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454:961-967.
-
(2008)
Nature
, vol.454
, pp. 961-967
-
-
Seale, P.1
-
74
-
-
84908563800
-
Epicardium-to-fat transition in injured heart
-
Liu Q., et al. Epicardium-to-fat transition in injured heart. Cell Res. 2014, 24:1367-1369.
-
(2014)
Cell Res.
, vol.24
, pp. 1367-1369
-
-
Liu, Q.1
-
75
-
-
80053266386
-
Mesothelial cell differentiation into osteoblast- and adipocyte-like cells
-
Lansley S.M., et al. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells. J. Cell. Mol. Med. 2011, 15:2095-2105.
-
(2011)
J. Cell. Mol. Med.
, vol.15
, pp. 2095-2105
-
-
Lansley, S.M.1
-
76
-
-
84873564358
-
Functional vascular smooth muscle-like cells derived from adult mouse uterine mesothelial cells
-
Lachaud C.C., et al. Functional vascular smooth muscle-like cells derived from adult mouse uterine mesothelial cells. PLoS ONE 2013, 8:e55181.
-
(2013)
PLoS ONE
, vol.8
, pp. e55181
-
-
Lachaud, C.C.1
-
77
-
-
53549130485
-
White fat progenitor cells reside in the adipose vasculature
-
Tang W., et al. White fat progenitor cells reside in the adipose vasculature. Science 2008, 322:583-586.
-
(2008)
Science
, vol.322
, pp. 583-586
-
-
Tang, W.1
-
78
-
-
84903127498
-
Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed
-
Sanchez-Gurmaches J., Guertin D.A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 2014, 5:4099.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4099
-
-
Sanchez-Gurmaches, J.1
Guertin, D.A.2
-
79
-
-
84876584194
-
Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis
-
Loureiro J., et al. Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis. PLoS ONE 2013, 8:e61165.
-
(2013)
PLoS ONE
, vol.8
, pp. e61165
-
-
Loureiro, J.1
-
80
-
-
84927665944
-
Tamoxifen reduces fat mass by boosting reactive oxygen species
-
Liu L., et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015, 6:e1586.
-
(2015)
Cell Death Dis.
, vol.6
, pp. e1586
-
-
Liu, L.1
|