메뉴 건너뛰기




Volumn 76, Issue 1, 2015, Pages 38-41

The catcher in the RIG-I

Author keywords

Antiviral activity; Interferon induction; Pathogen recognition receptor; RIG I

Indexed keywords

INTERFERON REGULATORY FACTOR 3; RETINOIC ACID INDUCIBLE PROTEIN I; RNA HELICASE; VIRUS RNA; DDX58 PROTEIN, HUMAN; DEAD BOX PROTEIN; IRF3 PROTEIN, HUMAN; REGULATORY RNA SEQUENCE;

EID: 84941746125     PISSN: 10434666     EISSN: 10960023     Source Type: Journal    
DOI: 10.1016/j.cyto.2015.07.002     Document Type: Review
Times cited : (18)

References (45)
  • 1
    • 3242813113 scopus 로고    scopus 로고
    • The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
    • Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004, 5:730-737.
    • (2004) Nat. Immunol. , vol.5 , pp. 730-737
    • Yoneyama, M.1    Kikuchi, M.2    Natsukawa, T.3    Shinobu, N.4    Imaizumi, T.5    Miyagishi, M.6
  • 2
    • 84884157315 scopus 로고    scopus 로고
    • Master sensors of pathogenic RNA - RIG-I like receptors
    • Schlee M. Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 2013, 218:1322-1335.
    • (2013) Immunobiology , vol.218 , pp. 1322-1335
    • Schlee, M.1
  • 4
    • 84869845792 scopus 로고    scopus 로고
    • A structure-based model of RIG-I activation
    • Kolakofsky D., Kowalinski E., Cusack S. A structure-based model of RIG-I activation. RNA 2012, 18:2118-2127.
    • (2012) RNA , vol.18 , pp. 2118-2127
    • Kolakofsky, D.1    Kowalinski, E.2    Cusack, S.3
  • 5
    • 80054703126 scopus 로고    scopus 로고
    • Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
    • Kowalinski E., Lunardi T., McCarthy A.A., Louber J., Brunel J., Grigorov B., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011, 147:423-435.
    • (2011) Cell , vol.147 , pp. 423-435
    • Kowalinski, E.1    Lunardi, T.2    McCarthy, A.A.3    Louber, J.4    Brunel, J.5    Grigorov, B.6
  • 6
    • 84924778328 scopus 로고    scopus 로고
    • Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
    • aaa2630
    • Liu S., Cai X., Wu J., Cong Q., Chen X., Li T., et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015, 347:aaa2630.
    • (2015) Science , vol.347
    • Liu, S.1    Cai, X.2    Wu, J.3    Cong, Q.4    Chen, X.5    Li, T.6
  • 7
    • 84896987305 scopus 로고    scopus 로고
    • Interferon-stimulated genes: a complex web of host defenses
    • Schneider W.M., Chevillotte M.D., Rice C.M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 2014, 32:513-545.
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 513-545
    • Schneider, W.M.1    Chevillotte, M.D.2    Rice, C.M.3
  • 8
    • 84908192059 scopus 로고    scopus 로고
    • Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates
    • Goubau D., Schlee M., Deddouche S., Pruijssers A.J., Zillinger T., Goldeck M., et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 2014, 514:372-375.
    • (2014) Nature , vol.514 , pp. 372-375
    • Goubau, D.1    Schlee, M.2    Deddouche, S.3    Pruijssers, A.J.4    Zillinger, T.5    Goldeck, M.6
  • 9
    • 34547960175 scopus 로고    scopus 로고
    • Small self-RNA generated by RNase L amplifies antiviral innate immunity
    • Malathi K., Dong B., Gale M., Silverman R.H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007, 448:816-819.
    • (2007) Nature , vol.448 , pp. 816-819
    • Malathi, K.1    Dong, B.2    Gale, M.3    Silverman, R.H.4
  • 10
    • 84929485094 scopus 로고    scopus 로고
    • RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA
    • Anchisi S., Guerra J., Garcin D. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. mBio. 2015, 6:e02349.
    • (2015) mBio. , vol.6 , pp. e02349
    • Anchisi, S.1    Guerra, J.2    Garcin, D.3
  • 11
    • 84883488816 scopus 로고    scopus 로고
    • Defining the functional determinants for RNA surveillance by RIG-I
    • Kohlway A., Luo D., Rawling D.C., Ding S.C., Pyle A.M. Defining the functional determinants for RNA surveillance by RIG-I. EMBO Rep. 2013, 14:772-779.
    • (2013) EMBO Rep. , vol.14 , pp. 772-779
    • Kohlway, A.1    Luo, D.2    Rawling, D.C.3    Ding, S.C.4    Pyle, A.M.5
  • 12
    • 67749133995 scopus 로고    scopus 로고
    • 5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
    • Schmidt A., Schwerd T., Hamm W., Hellmuth J.C., Cui S., Wenzel M., et al. 5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. USA 2009, 106:12067-12072.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 12067-12072
    • Schmidt, A.1    Schwerd, T.2    Hamm, W.3    Hellmuth, J.C.4    Cui, S.5    Wenzel, M.6
  • 13
    • 84902316192 scopus 로고    scopus 로고
    • Segmented negative-strand RNA viruses and RIG-I: divide (your genome) and rule
    • Weber M., Weber F. Segmented negative-strand RNA viruses and RIG-I: divide (your genome) and rule. Curr. Opin. Microbiol. 2014, 20:96-102.
    • (2014) Curr. Opin. Microbiol. , vol.20 , pp. 96-102
    • Weber, M.1    Weber, F.2
  • 14
    • 33750984771 scopus 로고    scopus 로고
    • RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
    • Pichlmair A., Schulz O., Tan C.P., Naslund T.I., Liljestrom P., Weber F., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314:997-1001.
    • (2006) Science , vol.314 , pp. 997-1001
    • Pichlmair, A.1    Schulz, O.2    Tan, C.P.3    Naslund, T.I.4    Liljestrom, P.5    Weber, F.6
  • 16
    • 68049089651 scopus 로고    scopus 로고
    • Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
    • Schlee M., Roth A., Hornung V., Hagmann C.A., Wimmenauer V., Barchet W., et al. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 2009, 31:25-34.
    • (2009) Immunity , vol.31 , pp. 25-34
    • Schlee, M.1    Roth, A.2    Hornung, V.3    Hagmann, C.A.4    Wimmenauer, V.5    Barchet, W.6
  • 18
    • 44349143815 scopus 로고    scopus 로고
    • Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction
    • Habjan M., Andersson I., Klingstrom J., Schumann M., Martin A., Zimmermann P., et al. Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 2008, 3:e2032.
    • (2008) PLoS ONE , vol.3 , pp. e2032
    • Habjan, M.1    Andersson, I.2    Klingstrom, J.3    Schumann, M.4    Martin, A.5    Zimmermann, P.6
  • 19
    • 84929630733 scopus 로고    scopus 로고
    • Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction
    • Liu G., Park H.S., Pyo H.M., Liu Q., Zhou Y. Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction. J. Virol. 2015, 89:6067-6079.
    • (2015) J. Virol. , vol.89 , pp. 6067-6079
    • Liu, G.1    Park, H.S.2    Pyo, H.M.3    Liu, Q.4    Zhou, Y.5
  • 20
    • 75749140581 scopus 로고    scopus 로고
    • RIG-I detects viral genomic RNA during negative-strand RNA virus infection
    • Rehwinkel J., Tan C.P., Goubau D., Schulz O., Pichlmair A., Bier K., et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2010, 140:397-408.
    • (2010) Cell , vol.140 , pp. 397-408
    • Rehwinkel, J.1    Tan, C.P.2    Goubau, D.3    Schulz, O.4    Pichlmair, A.5    Bier, K.6
  • 21
    • 84893321451 scopus 로고    scopus 로고
    • Segmented negative strand RNA virus nucleoprotein structure
    • Reguera J., Cusack S., Kolakofsky D. Segmented negative strand RNA virus nucleoprotein structure. Curr. Opin. Virol. 2014, 5:7-15.
    • (2014) Curr. Opin. Virol. , vol.5 , pp. 7-15
    • Reguera, J.1    Cusack, S.2    Kolakofsky, D.3
  • 22
    • 80051781196 scopus 로고    scopus 로고
    • Nucleoproteins and nucleocapsids of negative-strand RNA viruses
    • Ruigrok R.W., Crepin T., Kolakofsky D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol 2011, 14:504-510.
    • (2011) Curr Opin Microbiol , vol.14 , pp. 504-510
    • Ruigrok, R.W.1    Crepin, T.2    Kolakofsky, D.3
  • 23
    • 84930486338 scopus 로고    scopus 로고
    • Structural insights into bunyavirus replication and its regulation by the vRNA promoter
    • Gerlach P., Malet H., Cusack S., Reguera J. Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell 2015.
    • (2015) Cell
    • Gerlach, P.1    Malet, H.2    Cusack, S.3    Reguera, J.4
  • 24
    • 84922257981 scopus 로고    scopus 로고
    • Structure of influenza A polymerase bound to the viral RNA promoter
    • Pflug A., Guilligay D., Reich S., Cusack S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 2014, 516:355-360.
    • (2014) Nature , vol.516 , pp. 355-360
    • Pflug, A.1    Guilligay, D.2    Reich, S.3    Cusack, S.4
  • 25
    • 77957997708 scopus 로고    scopus 로고
    • Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
    • Baum A., Sachidanandam R., Garcia-Sastre A. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci USA 2010, 107:16303-16308.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 16303-16308
    • Baum, A.1    Sachidanandam, R.2    Garcia-Sastre, A.3
  • 26
    • 84875167118 scopus 로고    scopus 로고
    • Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling
    • Weber M., Gawanbacht A., Habjan M., Rang A., Borner C., Schmidt A.M., et al. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell. Host. Microbe. 2013, 13:336-346.
    • (2013) Cell. Host. Microbe. , vol.13 , pp. 336-346
    • Weber, M.1    Gawanbacht, A.2    Habjan, M.3    Rang, A.4    Borner, C.5    Schmidt, A.M.6
  • 27
    • 84926139701 scopus 로고    scopus 로고
    • Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I
    • Weber M., Sediri H., Felgenhauer U., Binzen I., Banfer S., Jacob R., et al. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell. Host. Microbe. 2015, 17:309-319.
    • (2015) Cell. Host. Microbe. , vol.17 , pp. 309-319
    • Weber, M.1    Sediri, H.2    Felgenhauer, U.3    Binzen, I.4    Banfer, S.5    Jacob, R.6
  • 28
    • 79953166075 scopus 로고    scopus 로고
    • Short double-stranded RNAs with an overhanging 5' ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys
    • Marq J.B., Hausmann S., Veillard N., Kolakofsky D., Garcin D. Short double-stranded RNAs with an overhanging 5' ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys. J. Biol. Chem. 2011, 286:6108-6116.
    • (2011) J. Biol. Chem. , vol.286 , pp. 6108-6116
    • Marq, J.B.1    Hausmann, S.2    Veillard, N.3    Kolakofsky, D.4    Garcin, D.5
  • 29
    • 84906330873 scopus 로고    scopus 로고
    • Interactions between the influenza A virus RNA polymerase components and retinoic acid-inducible gene I
    • Li W., Chen H., Sutton T., Obadan A., Perez D.R. Interactions between the influenza A virus RNA polymerase components and retinoic acid-inducible gene I. J. Virol. 2014, 88:10432-10447.
    • (2014) J. Virol. , vol.88 , pp. 10432-10447
    • Li, W.1    Chen, H.2    Sutton, T.3    Obadan, A.4    Perez, D.R.5
  • 30
    • 84923281083 scopus 로고    scopus 로고
    • Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions
    • Liedmann S., Hrincius E.R., Guy C., Anhlan D., Dierkes R., Carter R., et al. Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nat. Commun. 2014, 5:5645.
    • (2014) Nat. Commun. , vol.5 , pp. 5645
    • Liedmann, S.1    Hrincius, E.R.2    Guy, C.3    Anhlan, D.4    Dierkes, R.5    Carter, R.6
  • 31
    • 0025815377 scopus 로고
    • Expression of functional Bunyamwera virus L protein by recombinant vaccinia viruses
    • Jin H., Elliott R.M. Expression of functional Bunyamwera virus L protein by recombinant vaccinia viruses. J. Virol. 1991, 65:4182-4189.
    • (1991) J. Virol. , vol.65 , pp. 4182-4189
    • Jin, H.1    Elliott, R.M.2
  • 32
    • 0029073155 scopus 로고
    • The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules
    • Lopez N., Muller R., Prehaud C., Bouloy M. The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J. Virol. 1995, 69:3972-3979.
    • (1995) J. Virol. , vol.69 , pp. 3972-3979
    • Lopez, N.1    Muller, R.2    Prehaud, C.3    Bouloy, M.4
  • 33
    • 34247565021 scopus 로고    scopus 로고
    • Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells
    • Labadie K., Dos Santos Afonso E., Rameix-Welti M.A., van der Werf S., Naffakh N. Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology 2007, 362:271-282.
    • (2007) Virology , vol.362 , pp. 271-282
    • Labadie, K.1    Dos Santos Afonso, E.2    Rameix-Welti, M.A.3    van der Werf, S.4    Naffakh, N.5
  • 35
    • 84921280194 scopus 로고    scopus 로고
    • The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus
    • Sato S., Li K., Kameyama T., Hayashi T., Ishida Y., Murakami S., et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 2015, 42:123-132.
    • (2015) Immunity , vol.42 , pp. 123-132
    • Sato, S.1    Li, K.2    Kameyama, T.3    Hayashi, T.4    Ishida, Y.5    Murakami, S.6
  • 36
  • 38
    • 79955377543 scopus 로고    scopus 로고
    • TRIM5 is an innate immune sensor for the retrovirus capsid lattice
    • Pertel T., Hausmann S., Morger D., Zuger S., Guerra J., Lascano J., et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011, 472:361-365.
    • (2011) Nature , vol.472 , pp. 361-365
    • Pertel, T.1    Hausmann, S.2    Morger, D.3    Zuger, S.4    Guerra, J.5    Lascano, J.6
  • 40
    • 84869194198 scopus 로고    scopus 로고
    • Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses
    • Galao R.P., Le Tortorec A., Pickering S., Kueck T., Neil S.J. Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses. Cell. Host. Microbe. 2012, 12:633-644.
    • (2012) Cell. Host. Microbe. , vol.12 , pp. 633-644
    • Galao, R.P.1    Le Tortorec, A.2    Pickering, S.3    Kueck, T.4    Neil, S.J.5
  • 41
    • 84899734649 scopus 로고    scopus 로고
    • Cell-type-specific effects of RNase L on viral induction of beta interferon
    • e00856-14
    • Banerjee S., Chakrabarti A., Jha B.K., Weiss S.R., Silverman R.H. Cell-type-specific effects of RNase L on viral induction of beta interferon. mBio 2014, 5. e00856-14.
    • (2014) mBio , vol.5
    • Banerjee, S.1    Chakrabarti, A.2    Jha, B.K.3    Weiss, S.R.4    Silverman, R.H.5
  • 42
    • 84931282047 scopus 로고    scopus 로고
    • Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling
    • Ibsen M.S., Gad H.H., Andersen L.L., Hornung V., Julkunen I., Sarkar S.N., et al. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucl. Acids Res. 2015, 43:5236-5248.
    • (2015) Nucl. Acids Res. , vol.43 , pp. 5236-5248
    • Ibsen, M.S.1    Gad, H.H.2    Andersen, L.L.3    Hornung, V.4    Julkunen, I.5    Sarkar, S.N.6
  • 43
    • 84902829130 scopus 로고    scopus 로고
    • Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor
    • Zhu J., Zhang Y., Ghosh A., Cuevas R.A., Forero A., Dhar J., et al. Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 2014, 40:936-948.
    • (2014) Immunity , vol.40 , pp. 936-948
    • Zhu, J.1    Zhang, Y.2    Ghosh, A.3    Cuevas, R.A.4    Forero, A.5    Dhar, J.6
  • 44
    • 79952762131 scopus 로고    scopus 로고
    • Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells
    • Saitoh T., Satoh T., Yamamoto N., Uematsu S., Takeuchi O., Kawai T., et al. Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells. Immunity 2011, 34:352-363.
    • (2011) Immunity , vol.34 , pp. 352-363
    • Saitoh, T.1    Satoh, T.2    Yamamoto, N.3    Uematsu, S.4    Takeuchi, O.5    Kawai, T.6
  • 45
    • 84900537886 scopus 로고    scopus 로고
    • Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity
    • Upadhyay A.S., Vonderstein K., Pichlmair A., Stehling O., Bennett K.L., Dobler G., et al. Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity. Cell Microbiol. 2014, 16:834-848.
    • (2014) Cell Microbiol. , vol.16 , pp. 834-848
    • Upadhyay, A.S.1    Vonderstein, K.2    Pichlmair, A.3    Stehling, O.4    Bennett, K.L.5    Dobler, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.