-
1
-
-
3242813113
-
The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
-
Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004, 5:730-737.
-
(2004)
Nat. Immunol.
, vol.5
, pp. 730-737
-
-
Yoneyama, M.1
Kikuchi, M.2
Natsukawa, T.3
Shinobu, N.4
Imaizumi, T.5
Miyagishi, M.6
-
2
-
-
84884157315
-
Master sensors of pathogenic RNA - RIG-I like receptors
-
Schlee M. Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 2013, 218:1322-1335.
-
(2013)
Immunobiology
, vol.218
, pp. 1322-1335
-
-
Schlee, M.1
-
3
-
-
84921047960
-
Viral RNA detection by RIG-I-like receptors
-
Yoneyama M., Onomoto K., Jogi M., Akaboshi T., Fujita T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 2015, 32:48-53.
-
(2015)
Curr. Opin. Immunol.
, vol.32
, pp. 48-53
-
-
Yoneyama, M.1
Onomoto, K.2
Jogi, M.3
Akaboshi, T.4
Fujita, T.5
-
4
-
-
84869845792
-
A structure-based model of RIG-I activation
-
Kolakofsky D., Kowalinski E., Cusack S. A structure-based model of RIG-I activation. RNA 2012, 18:2118-2127.
-
(2012)
RNA
, vol.18
, pp. 2118-2127
-
-
Kolakofsky, D.1
Kowalinski, E.2
Cusack, S.3
-
5
-
-
80054703126
-
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
-
Kowalinski E., Lunardi T., McCarthy A.A., Louber J., Brunel J., Grigorov B., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011, 147:423-435.
-
(2011)
Cell
, vol.147
, pp. 423-435
-
-
Kowalinski, E.1
Lunardi, T.2
McCarthy, A.A.3
Louber, J.4
Brunel, J.5
Grigorov, B.6
-
6
-
-
84924778328
-
Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
-
aaa2630
-
Liu S., Cai X., Wu J., Cong Q., Chen X., Li T., et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015, 347:aaa2630.
-
(2015)
Science
, vol.347
-
-
Liu, S.1
Cai, X.2
Wu, J.3
Cong, Q.4
Chen, X.5
Li, T.6
-
8
-
-
84908192059
-
Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates
-
Goubau D., Schlee M., Deddouche S., Pruijssers A.J., Zillinger T., Goldeck M., et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 2014, 514:372-375.
-
(2014)
Nature
, vol.514
, pp. 372-375
-
-
Goubau, D.1
Schlee, M.2
Deddouche, S.3
Pruijssers, A.J.4
Zillinger, T.5
Goldeck, M.6
-
9
-
-
34547960175
-
Small self-RNA generated by RNase L amplifies antiviral innate immunity
-
Malathi K., Dong B., Gale M., Silverman R.H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007, 448:816-819.
-
(2007)
Nature
, vol.448
, pp. 816-819
-
-
Malathi, K.1
Dong, B.2
Gale, M.3
Silverman, R.H.4
-
10
-
-
84929485094
-
RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA
-
Anchisi S., Guerra J., Garcin D. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. mBio. 2015, 6:e02349.
-
(2015)
mBio.
, vol.6
, pp. e02349
-
-
Anchisi, S.1
Guerra, J.2
Garcin, D.3
-
11
-
-
84883488816
-
Defining the functional determinants for RNA surveillance by RIG-I
-
Kohlway A., Luo D., Rawling D.C., Ding S.C., Pyle A.M. Defining the functional determinants for RNA surveillance by RIG-I. EMBO Rep. 2013, 14:772-779.
-
(2013)
EMBO Rep.
, vol.14
, pp. 772-779
-
-
Kohlway, A.1
Luo, D.2
Rawling, D.C.3
Ding, S.C.4
Pyle, A.M.5
-
12
-
-
67749133995
-
5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
-
Schmidt A., Schwerd T., Hamm W., Hellmuth J.C., Cui S., Wenzel M., et al. 5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. USA 2009, 106:12067-12072.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 12067-12072
-
-
Schmidt, A.1
Schwerd, T.2
Hamm, W.3
Hellmuth, J.C.4
Cui, S.5
Wenzel, M.6
-
13
-
-
84902316192
-
Segmented negative-strand RNA viruses and RIG-I: divide (your genome) and rule
-
Weber M., Weber F. Segmented negative-strand RNA viruses and RIG-I: divide (your genome) and rule. Curr. Opin. Microbiol. 2014, 20:96-102.
-
(2014)
Curr. Opin. Microbiol.
, vol.20
, pp. 96-102
-
-
Weber, M.1
Weber, F.2
-
14
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
-
Pichlmair A., Schulz O., Tan C.P., Naslund T.I., Liljestrom P., Weber F., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314:997-1001.
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
Schulz, O.2
Tan, C.P.3
Naslund, T.I.4
Liljestrom, P.5
Weber, F.6
-
15
-
-
33750976374
-
5'-Triphosphate RNA is the ligand for RIG-I
-
Hornung V., Ellegast J., Kim S., Brzozka K., Jung A., Kato H., et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314:994-997.
-
(2006)
Science
, vol.314
, pp. 994-997
-
-
Hornung, V.1
Ellegast, J.2
Kim, S.3
Brzozka, K.4
Jung, A.5
Kato, H.6
-
16
-
-
68049089651
-
Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
-
Schlee M., Roth A., Hornung V., Hagmann C.A., Wimmenauer V., Barchet W., et al. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 2009, 31:25-34.
-
(2009)
Immunity
, vol.31
, pp. 25-34
-
-
Schlee, M.1
Roth, A.2
Hornung, V.3
Hagmann, C.A.4
Wimmenauer, V.5
Barchet, W.6
-
17
-
-
80054685883
-
Structural insights into RNA recognition by RIG-I
-
Luo D., Ding S.C., Vela A., Kohlway A., Lindenbach B.D., Pyle A.M. Structural insights into RNA recognition by RIG-I. Cell 2011, 147:409-422.
-
(2011)
Cell
, vol.147
, pp. 409-422
-
-
Luo, D.1
Ding, S.C.2
Vela, A.3
Kohlway, A.4
Lindenbach, B.D.5
Pyle, A.M.6
-
18
-
-
44349143815
-
Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction
-
Habjan M., Andersson I., Klingstrom J., Schumann M., Martin A., Zimmermann P., et al. Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 2008, 3:e2032.
-
(2008)
PLoS ONE
, vol.3
, pp. e2032
-
-
Habjan, M.1
Andersson, I.2
Klingstrom, J.3
Schumann, M.4
Martin, A.5
Zimmermann, P.6
-
19
-
-
84929630733
-
Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction
-
Liu G., Park H.S., Pyo H.M., Liu Q., Zhou Y. Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction. J. Virol. 2015, 89:6067-6079.
-
(2015)
J. Virol.
, vol.89
, pp. 6067-6079
-
-
Liu, G.1
Park, H.S.2
Pyo, H.M.3
Liu, Q.4
Zhou, Y.5
-
20
-
-
75749140581
-
RIG-I detects viral genomic RNA during negative-strand RNA virus infection
-
Rehwinkel J., Tan C.P., Goubau D., Schulz O., Pichlmair A., Bier K., et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2010, 140:397-408.
-
(2010)
Cell
, vol.140
, pp. 397-408
-
-
Rehwinkel, J.1
Tan, C.P.2
Goubau, D.3
Schulz, O.4
Pichlmair, A.5
Bier, K.6
-
21
-
-
84893321451
-
Segmented negative strand RNA virus nucleoprotein structure
-
Reguera J., Cusack S., Kolakofsky D. Segmented negative strand RNA virus nucleoprotein structure. Curr. Opin. Virol. 2014, 5:7-15.
-
(2014)
Curr. Opin. Virol.
, vol.5
, pp. 7-15
-
-
Reguera, J.1
Cusack, S.2
Kolakofsky, D.3
-
22
-
-
80051781196
-
Nucleoproteins and nucleocapsids of negative-strand RNA viruses
-
Ruigrok R.W., Crepin T., Kolakofsky D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol 2011, 14:504-510.
-
(2011)
Curr Opin Microbiol
, vol.14
, pp. 504-510
-
-
Ruigrok, R.W.1
Crepin, T.2
Kolakofsky, D.3
-
23
-
-
84930486338
-
Structural insights into bunyavirus replication and its regulation by the vRNA promoter
-
Gerlach P., Malet H., Cusack S., Reguera J. Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell 2015.
-
(2015)
Cell
-
-
Gerlach, P.1
Malet, H.2
Cusack, S.3
Reguera, J.4
-
24
-
-
84922257981
-
Structure of influenza A polymerase bound to the viral RNA promoter
-
Pflug A., Guilligay D., Reich S., Cusack S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 2014, 516:355-360.
-
(2014)
Nature
, vol.516
, pp. 355-360
-
-
Pflug, A.1
Guilligay, D.2
Reich, S.3
Cusack, S.4
-
25
-
-
77957997708
-
Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
-
Baum A., Sachidanandam R., Garcia-Sastre A. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci USA 2010, 107:16303-16308.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 16303-16308
-
-
Baum, A.1
Sachidanandam, R.2
Garcia-Sastre, A.3
-
26
-
-
84875167118
-
Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling
-
Weber M., Gawanbacht A., Habjan M., Rang A., Borner C., Schmidt A.M., et al. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell. Host. Microbe. 2013, 13:336-346.
-
(2013)
Cell. Host. Microbe.
, vol.13
, pp. 336-346
-
-
Weber, M.1
Gawanbacht, A.2
Habjan, M.3
Rang, A.4
Borner, C.5
Schmidt, A.M.6
-
27
-
-
84926139701
-
Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I
-
Weber M., Sediri H., Felgenhauer U., Binzen I., Banfer S., Jacob R., et al. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell. Host. Microbe. 2015, 17:309-319.
-
(2015)
Cell. Host. Microbe.
, vol.17
, pp. 309-319
-
-
Weber, M.1
Sediri, H.2
Felgenhauer, U.3
Binzen, I.4
Banfer, S.5
Jacob, R.6
-
28
-
-
79953166075
-
Short double-stranded RNAs with an overhanging 5' ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys
-
Marq J.B., Hausmann S., Veillard N., Kolakofsky D., Garcin D. Short double-stranded RNAs with an overhanging 5' ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys. J. Biol. Chem. 2011, 286:6108-6116.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 6108-6116
-
-
Marq, J.B.1
Hausmann, S.2
Veillard, N.3
Kolakofsky, D.4
Garcin, D.5
-
29
-
-
84906330873
-
Interactions between the influenza A virus RNA polymerase components and retinoic acid-inducible gene I
-
Li W., Chen H., Sutton T., Obadan A., Perez D.R. Interactions between the influenza A virus RNA polymerase components and retinoic acid-inducible gene I. J. Virol. 2014, 88:10432-10447.
-
(2014)
J. Virol.
, vol.88
, pp. 10432-10447
-
-
Li, W.1
Chen, H.2
Sutton, T.3
Obadan, A.4
Perez, D.R.5
-
30
-
-
84923281083
-
Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions
-
Liedmann S., Hrincius E.R., Guy C., Anhlan D., Dierkes R., Carter R., et al. Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nat. Commun. 2014, 5:5645.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5645
-
-
Liedmann, S.1
Hrincius, E.R.2
Guy, C.3
Anhlan, D.4
Dierkes, R.5
Carter, R.6
-
31
-
-
0025815377
-
Expression of functional Bunyamwera virus L protein by recombinant vaccinia viruses
-
Jin H., Elliott R.M. Expression of functional Bunyamwera virus L protein by recombinant vaccinia viruses. J. Virol. 1991, 65:4182-4189.
-
(1991)
J. Virol.
, vol.65
, pp. 4182-4189
-
-
Jin, H.1
Elliott, R.M.2
-
32
-
-
0029073155
-
The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules
-
Lopez N., Muller R., Prehaud C., Bouloy M. The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J. Virol. 1995, 69:3972-3979.
-
(1995)
J. Virol.
, vol.69
, pp. 3972-3979
-
-
Lopez, N.1
Muller, R.2
Prehaud, C.3
Bouloy, M.4
-
33
-
-
34247565021
-
Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells
-
Labadie K., Dos Santos Afonso E., Rameix-Welti M.A., van der Werf S., Naffakh N. Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology 2007, 362:271-282.
-
(2007)
Virology
, vol.362
, pp. 271-282
-
-
Labadie, K.1
Dos Santos Afonso, E.2
Rameix-Welti, M.A.3
van der Werf, S.4
Naffakh, N.5
-
34
-
-
77950539082
-
Association of RIG-I with innate immunity of ducks to influenza
-
Barber M.R., Aldridge J.R., Webster R.G., Magor K.E. Association of RIG-I with innate immunity of ducks to influenza. Proc. Natl. Acad. Sci. USA 2010, 107:5913-5918.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 5913-5918
-
-
Barber, M.R.1
Aldridge, J.R.2
Webster, R.G.3
Magor, K.E.4
-
35
-
-
84921280194
-
The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus
-
Sato S., Li K., Kameyama T., Hayashi T., Ishida Y., Murakami S., et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 2015, 42:123-132.
-
(2015)
Immunity
, vol.42
, pp. 123-132
-
-
Sato, S.1
Li, K.2
Kameyama, T.3
Hayashi, T.4
Ishida, Y.5
Murakami, S.6
-
38
-
-
79955377543
-
TRIM5 is an innate immune sensor for the retrovirus capsid lattice
-
Pertel T., Hausmann S., Morger D., Zuger S., Guerra J., Lascano J., et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011, 472:361-365.
-
(2011)
Nature
, vol.472
, pp. 361-365
-
-
Pertel, T.1
Hausmann, S.2
Morger, D.3
Zuger, S.4
Guerra, J.5
Lascano, J.6
-
40
-
-
84869194198
-
Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses
-
Galao R.P., Le Tortorec A., Pickering S., Kueck T., Neil S.J. Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses. Cell. Host. Microbe. 2012, 12:633-644.
-
(2012)
Cell. Host. Microbe.
, vol.12
, pp. 633-644
-
-
Galao, R.P.1
Le Tortorec, A.2
Pickering, S.3
Kueck, T.4
Neil, S.J.5
-
41
-
-
84899734649
-
Cell-type-specific effects of RNase L on viral induction of beta interferon
-
e00856-14
-
Banerjee S., Chakrabarti A., Jha B.K., Weiss S.R., Silverman R.H. Cell-type-specific effects of RNase L on viral induction of beta interferon. mBio 2014, 5. e00856-14.
-
(2014)
mBio
, vol.5
-
-
Banerjee, S.1
Chakrabarti, A.2
Jha, B.K.3
Weiss, S.R.4
Silverman, R.H.5
-
42
-
-
84931282047
-
Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling
-
Ibsen M.S., Gad H.H., Andersen L.L., Hornung V., Julkunen I., Sarkar S.N., et al. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucl. Acids Res. 2015, 43:5236-5248.
-
(2015)
Nucl. Acids Res.
, vol.43
, pp. 5236-5248
-
-
Ibsen, M.S.1
Gad, H.H.2
Andersen, L.L.3
Hornung, V.4
Julkunen, I.5
Sarkar, S.N.6
-
43
-
-
84902829130
-
Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor
-
Zhu J., Zhang Y., Ghosh A., Cuevas R.A., Forero A., Dhar J., et al. Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 2014, 40:936-948.
-
(2014)
Immunity
, vol.40
, pp. 936-948
-
-
Zhu, J.1
Zhang, Y.2
Ghosh, A.3
Cuevas, R.A.4
Forero, A.5
Dhar, J.6
-
44
-
-
79952762131
-
Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells
-
Saitoh T., Satoh T., Yamamoto N., Uematsu S., Takeuchi O., Kawai T., et al. Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells. Immunity 2011, 34:352-363.
-
(2011)
Immunity
, vol.34
, pp. 352-363
-
-
Saitoh, T.1
Satoh, T.2
Yamamoto, N.3
Uematsu, S.4
Takeuchi, O.5
Kawai, T.6
-
45
-
-
84900537886
-
Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity
-
Upadhyay A.S., Vonderstein K., Pichlmair A., Stehling O., Bennett K.L., Dobler G., et al. Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity. Cell Microbiol. 2014, 16:834-848.
-
(2014)
Cell Microbiol.
, vol.16
, pp. 834-848
-
-
Upadhyay, A.S.1
Vonderstein, K.2
Pichlmair, A.3
Stehling, O.4
Bennett, K.L.5
Dobler, G.6
|