-
3
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
Arlot S., Celisse A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4:40-79.
-
(2010)
Stat. Surv.
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
4
-
-
79955757684
-
Added predictive value of high-throughput molecular data to clinical data and its validation
-
Boulesteix A.L., Sauerbrei W. Added predictive value of high-throughput molecular data to clinical data and its validation. Brief. Bioinform. 2011, 12:215-229.
-
(2011)
Brief. Bioinform.
, vol.12
, pp. 215-229
-
-
Boulesteix, A.L.1
Sauerbrei, W.2
-
5
-
-
0000245743
-
Statistical modeling: the two cultures (with discussion)
-
Breiman L. Statistical modeling: the two cultures (with discussion). Stat. Sci. 2001, 16:199-231.
-
(2001)
Stat. Sci.
, vol.16
, pp. 199-231
-
-
Breiman, L.1
-
6
-
-
84867122690
-
ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
-
Brown M.R.G., Sidhu G.S., Greiner R., Asgarian N., Bastani M., Silverstone P.H., Greenshaw A.J., Dursun S.M. ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. 2012, 6.
-
(2012)
Front. Syst. Neurosci.
, vol.6
-
-
Brown, M.R.G.1
Sidhu, G.S.2
Greiner, R.3
Asgarian, N.4
Bastani, M.5
Silverstone, P.H.6
Greenshaw, A.J.7
Dursun, S.M.8
-
8
-
-
84899990151
-
Decoding continuous behavioral variables from neuroimaging data
-
Cohen J.R., Asarnow R.F., Sabb F.W., Bilder R.M., Bookheimer S.Y., Knowlton B.J., Poldrack R.A. Decoding continuous behavioral variables from neuroimaging data. Front. Neurosci. 2011, 5.
-
(2011)
Front. Neurosci.
, vol.5
-
-
Cohen, J.R.1
Asarnow, R.F.2
Sabb, F.W.3
Bilder, R.M.4
Bookheimer, S.Y.5
Knowlton, B.J.6
Poldrack, R.A.7
-
9
-
-
1042279287
-
Likelihood ratio tests in linear mixed models with one variance component
-
Crainiceanu C.M., Ruppert D. Likelihood ratio tests in linear mixed models with one variance component. J. R. Stat. Soc. Ser. B 2004, 66:165-185.
-
(2004)
J. R. Stat. Soc. Ser. B
, vol.66
, pp. 165-185
-
-
Crainiceanu, C.M.1
Ruppert, D.2
-
10
-
-
84866012927
-
Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging
-
Eloyan A., Muschelli J., Nebel M., Liu H., Han F., Zhao T., Barber A., Joel S., Pekar J., Mostofsky S., Caffo B. Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging. Front. Syst. Neurosci. 2012, 6.
-
(2012)
Front. Syst. Neurosci.
, vol.6
-
-
Eloyan, A.1
Muschelli, J.2
Nebel, M.3
Liu, H.4
Han, F.5
Zhao, T.6
Barber, A.7
Joel, S.8
Pekar, J.9
Mostofsky, S.10
Caffo, B.11
-
11
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J., Hastie T., Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33:1.
-
(2010)
J. Stat. Softw.
, vol.33
, pp. 1
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
12
-
-
84861331040
-
Ten ironic rules for non-statistical reviewers
-
Friston K. Ten ironic rules for non-statistical reviewers. NeuroImage 2012, 61:1300-1310.
-
(2012)
NeuroImage
, vol.61
, pp. 1300-1310
-
-
Friston, K.1
-
13
-
-
84880847793
-
Sample size and the fallacies of classical inference
-
Friston K. Sample size and the fallacies of classical inference. NeuroImage 2013, 81:503-504.
-
(2013)
NeuroImage
, vol.81
, pp. 503-504
-
-
Friston, K.1
-
14
-
-
0036334982
-
Classical and Bayesian inference in neuroimaging: theory
-
Friston K.J., Penny W., Phillips C., Kiebel S., Hinton G., Ashburner J. Classical and Bayesian inference in neuroimaging: theory. NeuroImage 2002, 16:465-483.
-
(2002)
NeuroImage
, vol.16
, pp. 465-483
-
-
Friston, K.J.1
Penny, W.2
Phillips, C.3
Kiebel, S.4
Hinton, G.5
Ashburner, J.6
-
15
-
-
85013881961
-
-
Academic Press, London
-
Friston K.J., Ashburner J., Kiebel S.J., Nichols T., Penny W. Statistical Parametric Mapping: The Analysis of Functional Brain Images 2007, Academic Press, London.
-
(2007)
Statistical Parametric Mapping: The Analysis of Functional Brain Images
-
-
Friston, K.J.1
Ashburner, J.2
Kiebel, S.J.3
Nichols, T.4
Penny, W.5
-
17
-
-
84872981771
-
Reanalysis of "Bedside detection of awareness in the vegetative state: a cohort study"
-
Goldfine A.M., Bardin J.C., Noirhomme Q., Fins J.J., Schiff N.D., Victor J.D. Reanalysis of "Bedside detection of awareness in the vegetative state: a cohort study". Lancet 2013, 381:289-291.
-
(2013)
Lancet
, vol.381
, pp. 289-291
-
-
Goldfine, A.M.1
Bardin, J.C.2
Noirhomme, Q.3
Fins, J.J.4
Schiff, N.D.5
Victor, J.D.6
-
18
-
-
28444452344
-
Permutation tests for classification: towards statistical significance in image-based studies
-
Springer, Berlin, C.J. Taylor, J.A. Noble (Eds.)
-
Golland P., Fischl B. Permutation tests for classification: towards statistical significance in image-based studies. Information Processing in Medical Imaging: Proceedings of the 18th International Conference 2003, 330-341. Springer, Berlin. C.J. Taylor, J.A. Noble (Eds.).
-
(2003)
Information Processing in Medical Imaging: Proceedings of the 18th International Conference
, pp. 330-341
-
-
Golland, P.1
Fischl, B.2
-
19
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
20
-
-
0003684449
-
-
Springer, New York
-
Hastie T.J., Tibshirani R.J., Friedman J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2009, Springer, New York. 2nd ed.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.J.1
Tibshirani, R.J.2
Friedman, J.H.3
-
21
-
-
0000069803
-
The large-sample power of tests based on permutations of observations
-
Hoeffding W. The large-sample power of tests based on permutations of observations. Ann. Math. Stat. 1952, 23:169-192.
-
(1952)
Ann. Math. Stat.
, vol.23
, pp. 169-192
-
-
Hoeffding, W.1
-
22
-
-
0038047907
-
Relation between permutation-test p values and classifier error estimates
-
Hsing T., Attoor S., Dougherty E. Relation between permutation-test p values and classifier error estimates. Mach. Learn. 2003, 52:11-30.
-
(2003)
Mach. Learn.
, vol.52
, pp. 11-30
-
-
Hsing, T.1
Attoor, S.2
Dougherty, E.3
-
23
-
-
84880811845
-
Why small low-powered studies are worse than large high-powered studies and how to protect against "trivial" findings in research: comment on Friston (2012)
-
Ingre M. Why small low-powered studies are worse than large high-powered studies and how to protect against "trivial" findings in research: comment on Friston (2012). NeuroImage 2013, 81:496-498.
-
(2013)
NeuroImage
, vol.81
, pp. 496-498
-
-
Ingre, M.1
-
26
-
-
84871997442
-
Functional causal mediation analysis with an application to brain connectivity
-
Lindquist M.A. Functional causal mediation analysis with an application to brain connectivity. J. Am. Stat. Assoc. 2012, 107:1297-1309.
-
(2012)
J. Am. Stat. Assoc.
, vol.107
, pp. 1297-1309
-
-
Lindquist, M.A.1
-
27
-
-
84880812523
-
Ironing out the statistical wrinkles in "ten ironic rules"
-
Lindquist M.A., Caffo B., Crainiceanu C. Ironing out the statistical wrinkles in "ten ironic rules". NeuroImage 2013, 81:499-502.
-
(2013)
NeuroImage
, vol.81
, pp. 499-502
-
-
Lindquist, M.A.1
Caffo, B.2
Crainiceanu, C.3
-
28
-
-
84901725294
-
A significance test for the lasso
-
Lockhart R., Taylor J., Tibshirani R.J., Tibshirani R. A significance test for the lasso. Ann. Stat. 2014, 42:413-468.
-
(2014)
Ann. Stat.
, vol.42
, pp. 413-468
-
-
Lockhart, R.1
Taylor, J.2
Tibshirani, R.J.3
Tibshirani, R.4
-
29
-
-
0000776754
-
On the problem of the most efficient tests of statistical hypotheses
-
Neyman J., Pearson E.S. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. Ser. A 1933, 231:289-337.
-
(1933)
Philos. Trans. R. Soc. Lond. Ser. A
, vol.231
, pp. 289-337
-
-
Neyman, J.1
Pearson, E.S.2
-
30
-
-
0036136472
-
Nonparametric permutation tests for functional neuroimaging: a primer with examples
-
Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 2001, 15:1-25.
-
(2001)
Hum. Brain Mapp.
, vol.15
, pp. 1-25
-
-
Nichols, T.E.1
Holmes, A.P.2
-
31
-
-
84899428996
-
Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions
-
Noirhomme Q., Lesenfants D., Gomez F., Soddu A., Schrouff J., Garraux G., Luxen A., Phillips C., Laureys S. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. Neuroimage Clin. 2014, 4:687-694.
-
(2014)
Neuroimage Clin.
, vol.4
, pp. 687-694
-
-
Noirhomme, Q.1
Lesenfants, D.2
Gomez, F.3
Soddu, A.4
Schrouff, J.5
Garraux, G.6
Luxen, A.7
Phillips, C.8
Laureys, S.9
-
32
-
-
77954676863
-
Permutation tests for studying classifier performance
-
Ojala M., Garriga G. Permutation tests for studying classifier performance. J. Mach. Learn. Res. 2010, 11:1833-1863.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1833-1863
-
-
Ojala, M.1
Garriga, G.2
-
34
-
-
80054120233
-
Comparing dynamic causal models using AIC, BIC and free energy
-
Penny W. Comparing dynamic causal models using AIC, BIC and free energy. NeuroImage 2012, 59:319-330.
-
(2012)
NeuroImage
, vol.59
, pp. 319-330
-
-
Penny, W.1
-
35
-
-
84876321464
-
Testing for improvement in prediction model performance
-
Pepe M.S., Kerr K.F., Longton G., Wang Z. Testing for improvement in prediction model performance. Stat. Med. 2013, 32:1467-1482.
-
(2013)
Stat. Med.
, vol.32
, pp. 1467-1482
-
-
Pepe, M.S.1
Kerr, K.F.2
Longton, G.3
Wang, Z.4
-
36
-
-
78149276744
-
Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn
-
Phipson B., Smyth G.K. Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 2010, 9.
-
(2010)
Stat. Appl. Genet. Mol. Biol.
, vol.9
-
-
Phipson, B.1
Smyth, G.K.2
-
37
-
-
84863304598
-
-
R Foundation for Statistical Computing, Vienna, Austria
-
R Core Team R: A Language and Environment for Statistical Computing 2014, R Foundation for Statistical Computing, Vienna, Austria, (URL: http://www.R-project.org/).
-
(2014)
R: A Language and Environment for Statistical Computing
-
-
-
38
-
-
62849093921
-
Smoothing parameter selection for a class of semiparametric linear models
-
Reiss P.T., Ogden R.T. Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. Ser. B 2009, 71:505-523.
-
(2009)
J. R. Stat. Soc. Ser. B
, vol.71
, pp. 505-523
-
-
Reiss, P.T.1
Ogden, R.T.2
-
39
-
-
84938495493
-
Wavelet-domain regression and predictive inference in psychiatric neuroimaging
-
(in press)
-
Reiss P.T., Huo L., Zhao Y., Kelly C., Ogden R.T. Wavelet-domain regression and predictive inference in psychiatric neuroimaging. Ann. Appl. Stat. 2015, (in press).
-
(2015)
Ann. Appl. Stat.
-
-
Reiss, P.T.1
Huo, L.2
Zhao, Y.3
Kelly, C.4
Ogden, R.T.5
-
40
-
-
0040753815
-
The large-sample power of permutation tests for randomization models
-
Robinson J. The large-sample power of permutation tests for randomization models. Ann. Stat. 1973, 1:291-296.
-
(1973)
Ann. Stat.
, vol.1
, pp. 291-296
-
-
Robinson, J.1
-
42
-
-
0037245343
-
Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
-
Simon R., Radmacher M.D., Dobbin K., McShane L.M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl. Cancer Inst. 2003, 95:14-18.
-
(2003)
J. Natl. Cancer Inst.
, vol.95
, pp. 14-18
-
-
Simon, R.1
Radmacher, M.D.2
Dobbin, K.3
McShane, L.M.4
-
43
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions (with discussion)
-
Stone M. Cross-validatory choice and assessment of statistical predictions (with discussion). J. R. Stat. Soc. Ser. B 1974, 36:111-147.
-
(1974)
J. R. Stat. Soc. Ser. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
44
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58:267-288.
-
(1996)
J. R. Stat. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
46
-
-
0001972601
-
The large-sample distribution of the likelihood ratio for testing composite hypotheses
-
Wilks S.S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 1938, 9:60-62.
-
(1938)
Ann. Math. Stat.
, vol.9
, pp. 60-62
-
-
Wilks, S.S.1
-
47
-
-
84896520627
-
Permutation inference for the general linear model
-
Winkler A.M., Ridgway G.R., Webster M.A., Smith S.M., Nichols T.E. Permutation inference for the general linear model. NeuroImage 2014, 92:381-397.
-
(2014)
NeuroImage
, vol.92
, pp. 381-397
-
-
Winkler, A.M.1
Ridgway, G.R.2
Webster, M.A.3
Smith, S.M.4
Nichols, T.E.5
-
48
-
-
78650862532
-
Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
-
Wood S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 2011, 73:3-36.
-
(2011)
J. R. Stat. Soc. Ser. B
, vol.73
, pp. 3-36
-
-
Wood, S.N.1
|