메뉴 건너뛰기




Volumn 92, Issue , 2014, Pages 381-397

Permutation inference for the general linear model

Author keywords

General linear model; Multiple regression; Permutation inference; Randomise

Indexed keywords

ARTICLE; COMPUTER SIMULATION; CONCEPTUAL FRAMEWORK; CONTROLLED STUDY; EXPERIMENTAL DESIGN; FALSE POSITIVE RESULT; IMAGE PROCESSING; INTERMETHOD COMPARISON; LEARNING ALGORITHM; NEUROIMAGING; NONPARAMETRIC TEST; PERMUTATION INFERENCE; PRIORITY JOURNAL; SAMPLE SIZE; STATISTICAL CONCEPTS; STATISTICAL DISTRIBUTION; STATISTICAL MODEL; SYSTEM ANALYSIS; ALGORITHM; ANIMAL; BRAIN; BRAIN MAPPING; HUMAN; METHODOLOGY; NERVE CELL NETWORK; PHYSIOLOGY; PROCEDURES; STATISTICAL ANALYSIS;

EID: 84896520627     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2014.01.060     Document Type: Article
Times cited : (2592)

References (94)
  • 1
    • 0033241810 scopus 로고    scopus 로고
    • An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model
    • Anderson M.J., Legendre P. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J. Stat. Comput. Simul. 1999, 62(3):271-303.
    • (1999) J. Stat. Comput. Simul. , vol.62 , Issue.3 , pp. 271-303
    • Anderson, M.J.1    Legendre, P.2
  • 2
    • 0035579095 scopus 로고    scopus 로고
    • Permutation tests for linear models
    • Anderson M.J., Robinson J. Permutation tests for linear models. Aust. N.Z. J. Stat. 2001, 43(1):75-88.
    • (2001) Aust. N.Z. J. Stat. , vol.43 , Issue.1 , pp. 75-88
    • Anderson, M.J.1    Robinson, J.2
  • 3
    • 0037319490 scopus 로고    scopus 로고
    • Permutation tests for multi-factorial analysis of variance
    • Anderson M., ter Braak C.J.F. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 2003, 73(2):85-113.
    • (2003) J. Stat. Comput. Simul. , vol.73 , Issue.2 , pp. 85-113
    • Anderson, M.1    Ter Braak, C.J.F.2
  • 5
    • 0002698749 scopus 로고
    • Tables for use in comparisons whose accuracy involves two variances, separately estimated
    • Aspin A.A., Welch B.L. Tables for use in comparisons whose accuracy involves two variances, separately estimated. Biometrika 1949, 36(3):290-296.
    • (1949) Biometrika , vol.36 , Issue.3 , pp. 290-296
    • Aspin, A.A.1    Welch, B.L.2
  • 6
    • 0038883132 scopus 로고
    • Salvaging experiments: interpreting least squares in non-random samples
    • United States Department of Commerce, Gaithersburg, Maryland, D. Hogben, D. Fife (Eds.)
    • Beaton A.E. Salvaging experiments: interpreting least squares in non-random samples. Computer Science and Statistics: Tenth Annual Symposium of the Interface 1978, 137-145. United States Department of Commerce, Gaithersburg, Maryland. D. Hogben, D. Fife (Eds.).
    • (1978) Computer Science and Statistics: Tenth Annual Symposium of the Interface , pp. 137-145
    • Beaton, A.E.1
  • 7
    • 84896533270 scopus 로고    scopus 로고
    • General multi-level linear modelling for group analysis in FMRI
    • University of Oxford, Oxford
    • Beckmann C.F., Jenkinson M., Smith S.M. General multi-level linear modelling for group analysis in FMRI. Tech. rep. 2001, University of Oxford, Oxford.
    • (2001) Tech. rep.
    • Beckmann, C.F.1    Jenkinson, M.2    Smith, S.M.3
  • 8
    • 0035263305 scopus 로고    scopus 로고
    • Permutation testing made practical for functional magnetic resonance image analysis
    • Belmonte M., Yurgelun-Todd D. Permutation testing made practical for functional magnetic resonance image analysis. IEEE Trans. Med. Imaging 2001, 20(3):243-248.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.3 , pp. 243-248
    • Belmonte, M.1    Yurgelun-Todd, D.2
  • 9
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57(1):289-300.
    • (1995) J. R. Stat. Soc. Ser. B , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 11
    • 0003114672 scopus 로고
    • Permutation theory in the derivation of robust criteria and the study of departures from assumption
    • Box G.E.P., Andersen S.L. Permutation theory in the derivation of robust criteria and the study of departures from assumption. J. R. Stat. Soc. Ser. B 1955, 17(1):1-34.
    • (1955) J. R. Stat. Soc. Ser. B , vol.17 , Issue.1 , pp. 1-34
    • Box, G.E.P.1    Andersen, S.L.2
  • 14
    • 84985614911 scopus 로고
    • Distribution-free methods in regression
    • Brown B.M., Maritz J.S. Distribution-free methods in regression. Aust. J. Stat. 1982, 24(3):318-331.
    • (1982) Aust. J. Stat. , vol.24 , Issue.3 , pp. 318-331
    • Brown, B.M.1    Maritz, J.S.2
  • 15
    • 0034393195 scopus 로고    scopus 로고
    • The nonparametric Behrens-Fisher problem: asymptotic theory and a small-sample approximation
    • Brunner E., Munzel U. The nonparametric Behrens-Fisher problem: asymptotic theory and a small-sample approximation. Biom. J. 2000, 42(1):17-25.
    • (2000) Biom. J. , vol.42 , Issue.1 , pp. 17-25
    • Brunner, E.1    Munzel, U.2
  • 17
    • 0032587690 scopus 로고    scopus 로고
    • Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain
    • Bullmore E.T., Suckling J., Overmeyer S., Rabe-Hesketh S., Taylor E., Brammer M.J. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans. Med. Imaging 1999, 18(1):32-42.
    • (1999) IEEE Trans. Med. Imaging , vol.18 , Issue.1 , pp. 32-42
    • Bullmore, E.T.1    Suckling, J.2    Overmeyer, S.3    Rabe-Hesketh, S.4    Taylor, E.5    Brammer, M.J.6
  • 18
    • 0035140147 scopus 로고    scopus 로고
    • Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains
    • Bullmore E., Long C., Suckling J., Fadili J., Calvert G., Zelaya F., Carpenter T.A., Brammer M. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum. Brain Mapp. 2001, 12(2):61-78.
    • (2001) Hum. Brain Mapp. , vol.12 , Issue.2 , pp. 61-78
    • Bullmore, E.1    Long, C.2    Suckling, J.3    Fadili, J.4    Calvert, G.5    Zelaya, F.6    Carpenter, T.A.7    Brammer, M.8
  • 20
    • 0029819777 scopus 로고    scopus 로고
    • Permutation tests for least absolute deviation regression
    • Cade B.S., Richards J.D. Permutation tests for least absolute deviation regression. Biometrics 1996, 52(3):886-902.
    • (1996) Biometrics , vol.52 , Issue.3 , pp. 886-902
    • Cade, B.S.1    Richards, J.D.2
  • 22
    • 0040311430 scopus 로고
    • Randomization tests for a multivariate two-sample problem
    • Chung J.H., Fraser D.A.S. Randomization tests for a multivariate two-sample problem. J. Am. Stat. Assoc. 1958, 53(283):729-735.
    • (1958) J. Am. Stat. Assoc. , vol.53 , Issue.283 , pp. 729-735
    • Chung, J.H.1    Fraser, D.A.S.2
  • 23
    • 38949202977 scopus 로고    scopus 로고
    • Sensitivity of MRQAP tests to collinearity and autocorrelation conditions
    • Dekker D., Krackhardt D., Snijders T.A.B. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika 2007, 72(4):563-581.
    • (2007) Psychometrika , vol.72 , Issue.4 , pp. 563-581
    • Dekker, D.1    Krackhardt, D.2    Snijders, T.A.B.3
  • 24
    • 0005428798 scopus 로고
    • Testing for the inclusion of variables in linear regression by a randomisation technique
    • Draper N.R., Stoneman D.M. Testing for the inclusion of variables in linear regression by a randomisation technique. Technometrics 1966, 8(4):695-699.
    • (1966) Technometrics , vol.8 , Issue.4 , pp. 695-699
    • Draper, N.R.1    Stoneman, D.M.2
  • 25
    • 0000816074 scopus 로고
    • Modified randomization tests for nonparametric hypotheses
    • Dwass M. Modified randomization tests for nonparametric hypotheses. Ann. Math. Stat. 1957, 28(1):181-187.
    • (1957) Ann. Math. Stat. , vol.28 , Issue.1 , pp. 181-187
    • Dwass, M.1
  • 26
    • 0000023449 scopus 로고
    • Approximate randomization tests
    • Edgington E.S. Approximate randomization tests. J. Psychol. 1969, 72(2):143-149.
    • (1969) J. Psychol. , vol.72 , Issue.2 , pp. 143-149
    • Edgington, E.S.1
  • 28
    • 0000801110 scopus 로고
    • Computers and the theory of statistics: thinking the unthinkable
    • Efron B. Computers and the theory of statistics: thinking the unthinkable. SIAM Rev. 1979, 21(4):460-480.
    • (1979) SIAM Rev. , vol.21 , Issue.4 , pp. 460-480
    • Efron, B.1
  • 29
    • 18844398070 scopus 로고    scopus 로고
    • Permutation methods: a basis for exact inference
    • Ernst M.D. Permutation methods: a basis for exact inference. Stat. Sci. 2004, 19(4):676-685.
    • (2004) Stat. Sci. , vol.19 , Issue.4 , pp. 676-685
    • Ernst, M.D.1
  • 31
    • 0000186592 scopus 로고
    • The fiducial argument in statistical inference
    • Fisher R.A. The fiducial argument in statistical inference. Ann. Eugen. 1935, 6(4):391-398.
    • (1935) Ann. Eugen. , vol.6 , Issue.4 , pp. 391-398
    • Fisher, R.A.1
  • 32
    • 0000074435 scopus 로고
    • A nonstochastic interpretation of reported significance levels
    • Freedman D., Lane D. A nonstochastic interpretation of reported significance levels. J. Bus. Econ. Stat. 1983, 1(4):292-298.
    • (1983) J. Bus. Econ. Stat. , vol.1 , Issue.4 , pp. 292-298
    • Freedman, D.1    Lane, D.2
  • 33
    • 0002545717 scopus 로고
    • Tests for no treatment effect in randomized clinical trials
    • Gail M.H., Tan W.Y., Piantadosi S. Tests for no treatment effect in randomized clinical trials. Biometrika 1988, 75(1):57-64.
    • (1988) Biometrika , vol.75 , Issue.1 , pp. 57-64
    • Gail, M.H.1    Tan, W.Y.2    Piantadosi, S.3
  • 34
    • 0036334830 scopus 로고    scopus 로고
    • Thresholding of statistical maps in functional neuroimaging using the false discovery rate
    • Genovese C.R., Lazar N.A., Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 2002, 15(4):870-878.
    • (2002) NeuroImage , vol.15 , Issue.4 , pp. 870-878
    • Genovese, C.R.1    Lazar, N.A.2    Nichols, T.3
  • 35
    • 0031885623 scopus 로고    scopus 로고
    • Analysis of variance by randomization with small data sets
    • Gonzalez L., Manly B.F.J. Analysis of variance by randomization with small data sets. Environmetrics 1998, 9(1):53-65.
    • (1998) Environmetrics , vol.9 , Issue.1 , pp. 53-65
    • Gonzalez, L.1    Manly, B.F.J.2
  • 36
    • 18444364186 scopus 로고    scopus 로고
    • Extensions of the concept of exchangeability and their applications
    • Good P. Extensions of the concept of exchangeability and their applications. J. Mod. Appl. Stat. Methods 2002, 1(2):243-247.
    • (2002) J. Mod. Appl. Stat. Methods , vol.1 , Issue.2 , pp. 243-247
    • Good, P.1
  • 39
    • 0025815687 scopus 로고
    • Two guidelines for bootstrap hypothesis testing
    • Hall P., Wilson S.R. Two guidelines for bootstrap hypothesis testing. Biometrics 1991, 47(2):757-762.
    • (1991) Biometrics , vol.47 , Issue.2 , pp. 757-762
    • Hall, P.1    Wilson, S.R.2
  • 40
    • 2942595874 scopus 로고    scopus 로고
    • Nonstationary cluster-size inference with random field and permutation methods
    • Hayasaka S., Phan K.L., Liberzon I., Worsley K.J., Nichols T.E. Nonstationary cluster-size inference with random field and permutation methods. NeuroImage 2004, 22(2):676-687.
    • (2004) NeuroImage , vol.22 , Issue.2 , pp. 676-687
    • Hayasaka, S.1    Phan, K.L.2    Liberzon, I.3    Worsley, K.J.4    Nichols, T.E.5
  • 41
    • 0030032744 scopus 로고    scopus 로고
    • Nonparametric analysis of statistic images from functional mapping experiments
    • Holmes A.P., Blair R.C., Watson J.D., Ford I. Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 1996, 16(1):7-22.
    • (1996) J. Cereb. Blood Flow Metab. , vol.16 , Issue.1 , pp. 7-22
    • Holmes, A.P.1    Blair, R.C.2    Watson, J.D.3    Ford, I.4
  • 42
    • 84910570226 scopus 로고
    • Estimating heteroscedastic variances in linear models
    • Horn S.D., Horn R.A., Duncan D.B. Estimating heteroscedastic variances in linear models. J. Am. Stat. Assoc. 1975, 70(350):380-385.
    • (1975) J. Am. Stat. Assoc. , vol.70 , Issue.350 , pp. 380-385
    • Horn, S.D.1    Horn, R.A.2    Duncan, D.B.3
  • 43
    • 0035473776 scopus 로고    scopus 로고
    • Random permutation testing in multiple linear regression
    • Huh M.H., Jhun M. Random permutation testing in multiple linear regression. Commun. Stat. Theory Methods 2001, 30(10):2023-2032.
    • (2001) Commun. Stat. Theory Methods , vol.30 , Issue.10 , pp. 2023-2032
    • Huh, M.H.1    Jhun, M.2
  • 44
    • 0001103640 scopus 로고
    • The comparison of several groups of observations when the ratios of the population variances are unknown
    • James G. The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika 1951, 38(3):324-329.
    • (1951) Biometrika , vol.38 , Issue.3 , pp. 324-329
    • James, G.1
  • 45
    • 33750525082 scopus 로고    scopus 로고
    • A new random permutation test in ANOVA models
    • Jung B.C., Jhun M., Song S.H. A new random permutation test in ANOVA models. Stat. Pap. 2006, 48(1):47-62.
    • (2006) Stat. Pap. , vol.48 , Issue.1 , pp. 47-62
    • Jung, B.C.1    Jhun, M.2    Song, S.H.3
  • 46
    • 0000057635 scopus 로고
    • The randomization theory of experimental inference
    • Kempthorne O. The randomization theory of experimental inference. J. Am. Stat. Assoc. 1955, 50(271):946-967.
    • (1955) J. Am. Stat. Assoc. , vol.50 , Issue.271 , pp. 946-967
    • Kempthorne, O.1
  • 47
    • 21844524167 scopus 로고
    • Randomization tests in econometrics
    • Kennedy P.E. Randomization tests in econometrics. J. Bus. Econ. Stat. 1995, 13(1):85-94.
    • (1995) J. Bus. Econ. Stat. , vol.13 , Issue.1 , pp. 85-94
    • Kennedy, P.E.1
  • 48
    • 0001343445 scopus 로고    scopus 로고
    • Randomization tests for multiple regression
    • Kennedy P.E., Cade B.S. Randomization tests for multiple regression. Commun. Stat. Simul. 1996, 25:923-936.
    • (1996) Commun. Stat. Simul. , vol.25 , pp. 923-936
    • Kennedy, P.E.1    Cade, B.S.2
  • 49
    • 77949568386 scopus 로고    scopus 로고
    • An exact permutation method for testing any effect in balanced and unbalanced fixed effect ANOVA
    • Kherad-Pajouh S., Renaud O. An exact permutation method for testing any effect in balanced and unbalanced fixed effect ANOVA. Comput. Stat. Data Anal. 2010, 54(7):1881-1893.
    • (2010) Comput. Stat. Data Anal. , vol.54 , Issue.7 , pp. 1881-1893
    • Kherad-Pajouh, S.1    Renaud, O.2
  • 50
    • 49949110063 scopus 로고    scopus 로고
    • The art of computer programming
    • Addison-Wesley
    • Knuth D.E. The art of computer programming. Fascicle 2 2005, vol. 4. Addison-Wesley.
    • (2005) Fascicle 2 , vol.4
    • Knuth, D.E.1
  • 51
    • 0842264079 scopus 로고    scopus 로고
    • Comparison of Fourier and wavelet resampling methods
    • Laird A.R., Rogers B.P., Meyerand M.E. Comparison of Fourier and wavelet resampling methods. Magn. Reson. Med. 2004, 51(2):418-422.
    • (2004) Magn. Reson. Med. , vol.51 , Issue.2 , pp. 418-422
    • Laird, A.R.1    Rogers, B.P.2    Meyerand, M.E.3
  • 52
    • 0005550903 scopus 로고
    • On the theory of some non-parametric hypotheses
    • Lehmann E., Stein C. On the theory of some non-parametric hypotheses. Ann. Math. Stat. 1949, 20(1):28-45.
    • (1949) Ann. Math. Stat. , vol.20 , Issue.1 , pp. 28-45
    • Lehmann, E.1    Stein, C.2
  • 53
    • 84926273899 scopus 로고
    • Urn models for regression analysis, with applications to employment discrimination studies
    • Levin B., Robbins H. Urn models for regression analysis, with applications to employment discrimination studies. Law Contemp. Probl. 1983, 46(4):247-267.
    • (1983) Law Contemp. Probl. , vol.46 , Issue.4 , pp. 247-267
    • Levin, B.1    Robbins, H.2
  • 54
    • 0030843419 scopus 로고    scopus 로고
    • Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging
    • Locascio J.J., Jennings P.J., Moore C.I., Corkin S. Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging. Hum. Brain Mapp. 1997, 5(3):168-193.
    • (1997) Hum. Brain Mapp. , vol.5 , Issue.3 , pp. 168-193
    • Locascio, J.J.1    Jennings, P.J.2    Moore, C.I.3    Corkin, S.4
  • 55
    • 0032372107 scopus 로고    scopus 로고
    • Why permutation tests are superior to t and F tests in biomedical research
    • Ludbrook J., Dudley H. Why permutation tests are superior to t and F tests in biomedical research. Am. Stat. 1998, 52(2):127-132.
    • (1998) Am. Stat. , vol.52 , Issue.2 , pp. 127-132
    • Ludbrook, J.1    Dudley, H.2
  • 56
    • 51249175390 scopus 로고
    • Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations
    • Manly B.F.J. Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res. Popul. Ecol. 1986, 28(2):201-218.
    • (1986) Res. Popul. Ecol. , vol.28 , Issue.2 , pp. 201-218
    • Manly, B.F.J.1
  • 58
    • 79957512772 scopus 로고    scopus 로고
    • Morphology-based hypothesis testing in discrete random fields: a non-parametric method to address the multiple-comparison problem in neuroimaging
    • Marroquin J.L., Biscay R.J., Ruiz-Correa S., Alba A., Ramirez R., Armony J.L. Morphology-based hypothesis testing in discrete random fields: a non-parametric method to address the multiple-comparison problem in neuroimaging. NeuroImage 2011, 56(4):1954-1967.
    • (2011) NeuroImage , vol.56 , Issue.4 , pp. 1954-1967
    • Marroquin, J.L.1    Biscay, R.J.2    Ruiz-Correa, S.3    Alba, A.4    Ramirez, R.5    Armony, J.L.6
  • 59
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: a primer with examples
    • Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 2002, 15(1):1-25.
    • (2002) Hum. Brain Mapp. , vol.15 , Issue.1 , pp. 1-25
    • Nichols, T.E.1    Holmes, A.P.2
  • 60
    • 84896520326 scopus 로고    scopus 로고
    • GLM permutation: nonparametric inference for arbitrary general linear models
    • Nichols T.E., Ridgway G.R., Webster M.G., Smith S.M. GLM permutation: nonparametric inference for arbitrary general linear models. NeuroImage 2008, 41(S1):S72.
    • (2008) NeuroImage , vol.41 , Issue.S1
    • Nichols, T.E.1    Ridgway, G.R.2    Webster, M.G.3    Smith, S.M.4
  • 61
    • 29144455436 scopus 로고    scopus 로고
    • The performance of randomization tests that use permutations of independent variables
    • O'Gorman T.W. The performance of randomization tests that use permutations of independent variables. Commun. Stat. Simul. Comput. 2005, 34(4):895-908.
    • (2005) Commun. Stat. Simul. Comput. , vol.34 , Issue.4 , pp. 895-908
    • O'Gorman, T.W.1
  • 62
    • 84985628216 scopus 로고
    • On permutation tests in multiple regression and analysis of covariance problems
    • Oja H. On permutation tests in multiple regression and analysis of covariance problems. Aust. J. Stat. 1987, 29(1):91-100.
    • (1987) Aust. J. Stat. , vol.29 , Issue.1 , pp. 91-100
    • Oja, H.1
  • 63
    • 15244358686 scopus 로고    scopus 로고
    • A comparison of random field theory and permutation methods for the statistical analysis of MEG data
    • Pantazis D., Nichols T.E., Baillet S., Leahy R.M. A comparison of random field theory and permutation methods for the statistical analysis of MEG data. NeuroImage 2005, 25(2):383-394.
    • (2005) NeuroImage , vol.25 , Issue.2 , pp. 383-394
    • Pantazis, D.1    Nichols, T.E.2    Baillet, S.3    Leahy, R.M.4
  • 64
    • 0008436761 scopus 로고
    • Some aspects of the problem of randomization
    • Pearson E.S. Some aspects of the problem of randomization. Biometrika 1937, 29(1/2):53-64.
    • (1937) Biometrika , vol.29 , Issue.1-2 , pp. 53-64
    • Pearson, E.S.1
  • 66
    • 84896510763 scopus 로고
    • A new solution for the generalized Behrens-Fisher problem
    • Pesarin F. A new solution for the generalized Behrens-Fisher problem. Statistica 1995, 55(2):131-146.
    • (1995) Statistica , vol.55 , Issue.2 , pp. 131-146
    • Pesarin, F.1
  • 69
    • 78149276744 scopus 로고    scopus 로고
    • Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn
    • (Article39)
    • Phipson B., Smyth G.K. Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 2010, 9(1). (Article39).
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , Issue.1
    • Phipson, B.1    Smyth, G.K.2
  • 70
    • 0000986628 scopus 로고
    • Significance tests which may be applied to samples from any populations
    • Pitman E.J.G. Significance tests which may be applied to samples from any populations. Suppl. J. R. Stat. Soc. 1937, 4(1):119-130.
    • (1937) Suppl. J. R. Stat. Soc. , vol.4 , Issue.1 , pp. 119-130
    • Pitman, E.J.G.1
  • 71
    • 0000986633 scopus 로고
    • Significance tests which may be applied to samples from any populations. II. The correlation coefficient test
    • Pitman E.J.G. Significance tests which may be applied to samples from any populations. II. The correlation coefficient test. Suppl. J. R. Stat. Soc. 1937, 4(2):225-232.
    • (1937) Suppl. J. R. Stat. Soc. , vol.4 , Issue.2 , pp. 225-232
    • Pitman, E.J.G.1
  • 72
    • 0001274062 scopus 로고
    • Significance tests which may be applied to samples from any populations: III. The analysis of variance test
    • Pitman E.J.G. Significance tests which may be applied to samples from any populations: III. The analysis of variance test. Biometrika 1938, 29(3/4):322-335.
    • (1938) Biometrika , vol.29 , Issue.3-4 , pp. 322-335
    • Pitman, E.J.G.1
  • 75
    • 34147173367 scopus 로고    scopus 로고
    • Rank-order versus mean based statistics for neuroimaging
    • Rorden C., Bonilha L., Nichols T.E. Rank-order versus mean based statistics for neuroimaging. NeuroImage 2007, 35(4):1531-1537.
    • (2007) NeuroImage , vol.35 , Issue.4 , pp. 1531-1537
    • Rorden, C.1    Bonilha, L.2    Nichols, T.E.3
  • 76
    • 78650187047 scopus 로고    scopus 로고
    • Adjusting the effect of nonstationarity in cluster-based and TFCE inference
    • Salimi-Khorshidi G., Smith S.M., Nichols T.E. Adjusting the effect of nonstationarity in cluster-based and TFCE inference. NeuroImage 2011, 54(3):2006-2019.
    • (2011) NeuroImage , vol.54 , Issue.3 , pp. 2006-2019
    • Salimi-Khorshidi, G.1    Smith, S.M.2    Nichols, T.E.3
  • 77
    • 0005370281 scopus 로고
    • Statistical inference in the non-parametric case
    • Scheffé H. Statistical inference in the non-parametric case. Ann. Math. Stat. 1943, 14(4):305-332.
    • (1943) Ann. Math. Stat. , vol.14 , Issue.4 , pp. 305-332
    • Scheffé, H.1
  • 79
    • 0004242197 scopus 로고
    • John Wiley and Sons, New York
    • Searle S.R. Linear Models 1971, John Wiley and Sons, New York.
    • (1971) Linear Models
    • Searle, S.R.1
  • 80
    • 84947348224 scopus 로고
    • Estimates of the regression coefficient based on Kendall's tau
    • Sen P.K. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 1968, 63(324):1379-1389.
    • (1968) J. Am. Stat. Assoc. , vol.63 , Issue.324 , pp. 1379-1389
    • Sen, P.K.1
  • 81
    • 55149112384 scopus 로고    scopus 로고
    • Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
    • Smith S.M., Nichols T.E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 2009, 44(1):83-98.
    • (2009) NeuroImage , vol.44 , Issue.1 , pp. 83-98
    • Smith, S.M.1    Nichols, T.E.2
  • 83
    • 85004911426 scopus 로고
    • The approximate randomization test as an alternative to the F test in analysis of variance
    • Still A.W., White A.P. The approximate randomization test as an alternative to the F test in analysis of variance. Br. J. Math. Stat. Psychol. 1981, 34(2):243-252.
    • (1981) Br. J. Math. Stat. Psychol. , vol.34 , Issue.2 , pp. 243-252
    • Still, A.W.1    White, A.P.2
  • 84
    • 3042817296 scopus 로고    scopus 로고
    • Permutation tests for factorially designed neuroimaging experiments
    • Suckling J., Bullmore E. Permutation tests for factorially designed neuroimaging experiments. Hum. Brain Mapp. 2004, 22(3):193-205.
    • (2004) Hum. Brain Mapp. , vol.22 , Issue.3 , pp. 193-205
    • Suckling, J.1    Bullmore, E.2
  • 85
    • 0002630110 scopus 로고
    • Permutation versus bootstrap significance tests in multiple regression and ANOVA
    • Springer-Verlag, Berlin, K.-H. Jöckel, G. Rothe, W. Sendler (Eds.)
    • ter Braak C.J.F. Permutation versus bootstrap significance tests in multiple regression and ANOVA. Bootstrapping and Related Techniques. No. 1989 1992, 79-86. Springer-Verlag, Berlin. K.-H. Jöckel, G. Rothe, W. Sendler (Eds.).
    • (1992) Bootstrapping and Related Techniques. No. 1989 , pp. 79-86
    • Ter Braak, C.J.F.1
  • 87
    • 0010517185 scopus 로고
    • Conditional Monte Carlo techniques in a complex problem about normal samples
    • Wiley, New York, H.A. Meyer (Ed.)
    • Trotter H.F., Tukey J.W. Conditional Monte Carlo techniques in a complex problem about normal samples. Symposium on Monte Carlo Methods 1956, 64-79. Wiley, New York. H.A. Meyer (Ed.).
    • (1956) Symposium on Monte Carlo Methods , pp. 64-79
    • Trotter, H.F.1    Tukey, J.W.2
  • 88
    • 0000124902 scopus 로고
    • On the comparison of several mean values: an alternative approach
    • Welch B.L. On the comparison of several mean values: an alternative approach. Biometrika 1951, 38(3):330-336.
    • (1951) Biometrika , vol.38 , Issue.3 , pp. 330-336
    • Welch, B.L.1
  • 89
    • 0001635475 scopus 로고
    • Construction of permutation tests
    • Welch W.J. Construction of permutation tests. J. Am. Stat. Assoc. 1990, 85(411):693-698.
    • (1990) J. Am. Stat. Assoc. , vol.85 , Issue.411 , pp. 693-698
    • Welch, W.J.1
  • 90
    • 54549090069 scopus 로고    scopus 로고
    • Multiple testing with minimal assumptions
    • Westfall P.H., Troendle J.F. Multiple testing with minimal assumptions. Biom. J. 2008, 50(5):745-755.
    • (2008) Biom. J. , vol.50 , Issue.5 , pp. 745-755
    • Westfall, P.H.1    Troendle, J.F.2
  • 92
    • 84946650481 scopus 로고
    • Probable inference, the law of succession, and statistical inference
    • Wilson E.B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 1927, 22(158):209-212.
    • (1927) J. Am. Stat. Assoc. , vol.22 , Issue.158 , pp. 209-212
    • Wilson, E.B.1
  • 94
    • 0033472709 scopus 로고    scopus 로고
    • Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics
    • Yekutieli D., Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Stat. Plann. Infer. 1999, 82(1-2):171-196.
    • (1999) J. Stat. Plann. Infer. , vol.82 , Issue.1-2 , pp. 171-196
    • Yekutieli, D.1    Benjamini, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.