메뉴 건너뛰기




Volumn 9, Issue 2, 2015, Pages 1076-1101

Wavelet-domain regression and predictive inference in psychiatric neuroimaging

Author keywords

ADHD 200; Elastic net; Functional confounding; Functional regression; Functionalmagnetic resonance imaging; Sparse partial least squares; Sparse principal component regression

Indexed keywords


EID: 84938495493     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/15-AOAS829     Document Type: Article
Times cited : (33)

References (90)
  • 1
    • 84872254483 scopus 로고    scopus 로고
    • The ADHD-200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience
    • ADHD-200 CONSORTIUM (2012). The ADHD-200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6 62.
    • (2012) Front. Syst. Neurosci , vol.6 , pp. 62
  • 2
    • 64849109341 scopus 로고    scopus 로고
    • Functional supervised classification with wavelets
    • MR2435041
    • BERLINET, A., BIAU, G. and ROUVIÈRE, L. (2008). Functional supervised classification with wavelets. Ann. I.S.U.P. 52 61-80. MR2435041
    • (2008) Ann. I.S.U. P , vol.52 , pp. 61-80
    • Berlinet, A.1    Biau, G.2    Rouvière, L.3
  • 3
    • 1542469448 scopus 로고    scopus 로고
    • Bayesian wavelet regression on curves with application to a spectroscopic calibration problem
    • MR1939343
    • BROWN, P. J., FEARN, T. and VANNUCCI, M. (2001). Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. J. Amer. Statist. Assoc. 96 398-408. MR1939343
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 398-408
    • Brown, P.J.1    Fearn, T.2    Vannucci, M.3
  • 6
    • 33847349358 scopus 로고    scopus 로고
    • Prediction in functional linear regression
    • MR2291496
    • CAI, T. T. and HALL, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159- 2179. MR2291496
    • (2006) Ann. Statist , vol.34 , pp. 2159-2179
    • Cai, T.T.1    Hall, P.2
  • 8
    • 0041459525 scopus 로고    scopus 로고
    • Spline estimators for the functional linear model
    • MR1997162
    • CARDOT, H., FERRATY, F. and SARDA, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13 571-591. MR1997162
    • (2003) Statist. Sinica , vol.13 , pp. 571-591
    • Cardot, H.1    Ferraty, F.2    Sarda, P.3
  • 9
    • 84911992679 scopus 로고    scopus 로고
    • Functional data classification: A wavelet approach
    • CHANG, C., CHEN, Y. and OGDEN, R. T. (2014). Functional data classification: A wavelet approach. Comput. Statist. 29 1497-1513.
    • (2014) Comput. Statist , vol.29 , pp. 1497-1513
    • Chang, C.1    Chen, Y.2    Ogden, R.T.3
  • 10
    • 84901793403 scopus 로고    scopus 로고
    • Robust parametric classification and variable selection by a minimum distance criterion
    • CHI, E. C. and SCOTT, D. W. (2014). Robust parametric classification and variable selection by a minimum distance criterion. J. Comput. Graph. Statist. 23 111-128.
    • (2014) J. Comput. Graph. Statist , vol.23 , pp. 111-128
    • Chi, E.C.1    Scott, D.W.2
  • 11
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • MR2751241
    • CHUN, H. and KELEŞ, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 3-25. MR2751241
    • (2010) J. R. Stat. Soc. Ser. B. Stat. Methodol , vol.72 , pp. 3-25
    • Chun, H.1    Keleş, S.2
  • 12
    • 49449106707 scopus 로고    scopus 로고
    • Fisher lecture: Dimension reduction in regression
    • MR2408655
    • COOK, R. D. (2007). Fisher lecture: Dimension reduction in regression. Statist. Sci. 22 1-26. MR2408655
    • (2007) Statist. Sci , vol.22 , pp. 1-26
    • Cook, R.D.1
  • 13
    • 73149109077 scopus 로고    scopus 로고
    • Disease state prediction from resting state functional connectivity
    • CRADDOCK, R. C., HOLTZHEIMER III, P. E., HU, X. P. and MAYBERG, H. S. (2009). Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 62 1619-1628.
    • (2009) Magn. Reson. Med , vol.62 , pp. 1619-1628
    • Craddock, R.C.1    Holtzheimer, P.E.2    Hu, X.P.3    Mayberg, H.S.4
  • 15
    • 84990575058 scopus 로고
    • Orthonormal bases of compactly supported wavelets
    • MR0951745
    • DAUBECHIES, I. (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41 909-996. MR0951745
    • (1988) Comm. Pure Appl. Math , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 16
    • 84858298016 scopus 로고    scopus 로고
    • Achieving near perfect classification for functional data
    • MR2899863
    • DELAIGLE, A. and HALL, P. (2012a). Achieving near perfect classification for functional data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 267-286. MR2899863
    • (2012) J. R. Stat. Soc. Ser. B. Stat. Methodol , vol.74 , pp. 267-286
    • Delaigle, A.1    Hall, P.2
  • 17
    • 84870678371 scopus 로고    scopus 로고
    • Methodology and theory for partial least squares applied to functional data
    • MR3014309
    • DELAIGLE, A. and HALL, P. (2012b). Methodology and theory for partial least squares applied to functional data. Ann. Statist. 40 322-352. MR3014309
    • (2012) Ann. Statist , vol.40 , pp. 322-352
    • Delaigle, A.1    Hall, P.2
  • 18
    • 20744452472 scopus 로고    scopus 로고
    • Classification using generalized partial least squares
    • MR2160814
    • DING, B. and GENTLEMAN, R. (2005). Classification using generalized partial least squares. J. Comput. Graph. Statist. 14 280-298. MR2160814
    • (2005) J. Comput. Graph. Statist , vol.14 , pp. 280-298
    • Ding, B.1    Gentleman, R.2
  • 19
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • MR1311089
    • DONOHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. MR1311089
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 21
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • MR1946581
    • FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 22
    • 38049166097 scopus 로고    scopus 로고
    • On using truncated sequential probability ratio test boundaries for Monte Carlo implementation of hypothesis tests
    • MR2412490
    • FAY, M. P., KIM, H.-J. and HACHEY, M. (2007). On using truncated sequential probability ratio test boundaries for Monte Carlo implementation of hypothesis tests. J. Comput. Graph. Statist. 16 946-967. MR2412490
    • (2007) J. Comput. Graph. Statist , vol.16 , pp. 946-967
    • Fay, M.P.1    Kim, H.-J.2    Hachey, M.3
  • 23
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • FRIEDMAN, J.,HASTIE, T. and TIBSHIRANI, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33 1-22.
    • (2010) J. Stat. Softw , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 24
    • 84938504132 scopus 로고    scopus 로고
    • Smooth scalar-on-image regression via spatial Bayesian variable selection
    • GOLDSMITH, J.,HUANG, L. andCRAINICEANU, C. M. (2014). Smooth scalar-on-image regression via spatial Bayesian variable selection. J. Comput. Graph. Statist. 8 1045-1064.
    • (2014) J. Comput. Graph. Statist , vol.8 , pp. 1045-1064
    • Goldsmith, J.1    Huang, L.2    Crainiceanu, C.M.3
  • 26
    • 28444452344 scopus 로고    scopus 로고
    • Permutation tests for classification: Towards statistical significance in image-based studies
    • (C. J. Taylor and J. A. Noble, eds.) Springer, Berlin
    • GOLLAND, P. and FISCHL, B. (2003). Permutation tests for classification: Towards statistical significance in image-based studies. In Information Processing in Medical Imaging: Proceedings of the 18th International Conference (C. J. Taylor and J. A. Noble, eds.) 330-341. Springer, Berlin.
    • (2003) Information Processing in Medical Imaging: Proceedings of the 18th International Conference , pp. 330-341
    • Golland, P.1    Fischl, B.2
  • 28
    • 77951920655 scopus 로고    scopus 로고
    • Bivariate splines for spatial functional regression models
    • MR2662608
    • GUILLAS, S. and LAI, M.-J. (2010). Bivariate splines for spatial functional regression models. J. Nonparametr. Stat. 22 477-497. MR2662608
    • (2010) J. Nonparametr. Stat , vol.22 , pp. 477-497
    • Guillas, S.1    Lai, M.-J.2
  • 29
    • 35348874516 scopus 로고    scopus 로고
    • Methodology and convergence rates for functional linear regression
    • MR2332269
    • HALL, P. and HOROWITZ, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35 70-91. MR2332269
    • (2007) Ann. Statist , vol.35 , pp. 70-91
    • Hall, P.1    Horowitz, J.L.2
  • 31
    • 84880946754 scopus 로고    scopus 로고
    • Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes
    • HUANG, L., GOLDSMITH, J., REISS, P. T., REICH, D. S. and CRAINICEANU, C. M. (2013). Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes. NeuroImage 83 210-223.
    • (2013) NeuroImage , vol.83 , pp. 210-223
    • Huang, L.1    Goldsmith, J.2    Reiss, P.T.3    Reich, D.S.4    Crainiceanu, C.M.5
  • 33
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • MR2751448
    • JOHNSTONE, I. M. and LU, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 104 682-693. MR2751448
    • (2009) J. Amer. Statist. Assoc , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 34
    • 84870064521 scopus 로고    scopus 로고
    • Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
    • KAPUR, S., PHILLIPS, A. G. and INSEL, T. R. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17 1174-1179.
    • (2012) Mol. Psychiatry , vol.17 , pp. 1174-1179
    • Kapur, S.1    Phillips, A.G.2    Insel, T.R.3
  • 35
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • MALLAT, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11 674-693.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 37
    • 77956637967 scopus 로고    scopus 로고
    • Wavelet-based functional linear mixed models: An application to measurement error-corrected distributed lag models
    • MALLOY, E. J.,MORRIS, J. S., ADAR, S. D., SUH, H., GOLD, D. R. and COULL, B. A. (2010). Wavelet-based functional linear mixed models: An application to measurement error-corrected distributed lag models. Biostatistics 11 432-452.
    • (2010) Biostatistics , vol.11 , pp. 432-452
    • Malloy, E.J.1    Morris, J.S.2    Adar, S.D.3    Suh, H.4    Gold, D.R.5    Coull, B.A.6
  • 38
    • 0242718698 scopus 로고    scopus 로고
    • Iteratively reweighted partial least squares estimation for generalized linear regression
    • MARX, B. D. (1996). Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38 374-381.
    • (1996) Technometrics , vol.38 , pp. 374-381
    • Marx, B.D.1
  • 39
    • 0033079479 scopus 로고    scopus 로고
    • Generalized linear regression on sampled signals and curves: A P-spline approach
    • MARX, B. D. and EILERS, P. H. C. (1999). Generalized linear regression on sampled signals and curves: A P-spline approach. Technometrics 41 1-13.
    • (1999) Technometrics , vol.41 , pp. 1-13
    • Marx, B.D.1    Eilers, P.H.C.2
  • 40
    • 13444257535 scopus 로고    scopus 로고
    • Multidimensional penalized signal regression
    • MR2135789
    • MARX, B. D. and EILERS, P. H. C. (2005). Multidimensional penalized signal regression. Technometrics 47 13-22. MR2135789
    • (2005) Technometrics , vol.47 , pp. 13-22
    • Marx, B.D.1    Eilers, P.H.C.2
  • 41
    • 0000957593 scopus 로고
    • Principal components regression in exploratory statistical research
    • MASSY, W. F. (1965). Principal components regression in exploratory statistical research. J. Amer. Statist. Assoc. 60 234-256.
    • (1965) J. Amer. Statist. Assoc , vol.60 , pp. 234-256
    • Massy, W.F.1
  • 43
  • 44
    • 84856284445 scopus 로고    scopus 로고
    • Open neuroscience solutions for the connectome-wide association era
    • MILHAM, M. P. (2012). Open neuroscience solutions for the connectome-wide association era. Neuron 73 214-218.
    • (2012) Neuron , vol.73 , pp. 214-218
    • Milham, M.P.1
  • 45
    • 80054689503 scopus 로고    scopus 로고
    • Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data
    • MR2840180
    • MORRIS, J. S., BALADANDAYUTHAPANI, V., HERRICK, R. C., SANNA, P. and GUTSTEIN, H. (2011). Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. Ann. Appl. Stat. 5 894-923. MR2840180
    • (2011) Ann. Appl. Stat , vol.5 , pp. 894-923
    • Morris, J.S.1    Baladandayuthapani, V.2    Herrick, R.C.3    Sanna, P.4    Gutstein, H.5
  • 46
    • 19744372814 scopus 로고    scopus 로고
    • Generalized functional linear models
    • MR2163159
    • MÜLLER, H.-G. and STADTMÜLLER, U. (2005). Generalized functional linear models. Ann. Statist. 33 774-805. MR2163159
    • (2005) Ann. Statist , vol.33 , pp. 774-805
    • Müller, H.-G.1    Stadtmüller, U.2
  • 47
    • 27644451742 scopus 로고    scopus 로고
    • The prediction error in CLS and PLS: The importance of feature selection prior to multivariate calibration
    • NADLER, B. and COIFMAN, R. R. (2005). The prediction error in CLS and PLS: The importance of feature selection prior to multivariate calibration. J. Chemom. 19 107-118.
    • (2005) J. Chemom , vol.19 , pp. 107-118
    • Nadler, B.1    Coifman, R.R.2
  • 50
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • NGUYEN, D. V. and ROCKE, D. M. (2002). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 51
    • 84863008840 scopus 로고    scopus 로고
    • Multiple testing corrections, nonparametric methods, and random field theory
    • NICHOLS, T. E. (2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage 62 811-815.
    • (2012) NeuroImage , vol.62 , pp. 811-815
    • Nichols, T.E.1
  • 53
    • 77954676863 scopus 로고    scopus 로고
    • Permutation tests for studying classifier performance
    • MR2660654
    • OJALA, M. and GARRIGA, G. C. (2010). Permutation tests for studying classifier performance. J. Mach. Learn. Res. 11 1833-1863. MR2660654
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 1833-1863
    • Ojala, M.1    Garriga, G.C.2
  • 55
    • 14544305522 scopus 로고    scopus 로고
    • A permutation test for inference in logistic regression with small- and moderate-sized data sets
    • MR2134534
    • POTTER, D. M. (2005). A permutation test for inference in logistic regression with small- and moderate-sized data sets. Stat. Med. 24 693-708. MR2134534
    • (2005) Stat. Med , vol.24 , pp. 693-708
    • Potter, D.M.1
  • 56
    • 10144244015 scopus 로고    scopus 로고
    • PLS regression on a stochastic process
    • MR2134488
    • PREDA, C. and SAPORTA, G. (2005). PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 149-158. MR2134488
    • (2005) Comput. Statist. Data Anal , vol.48 , pp. 149-158
    • Preda, C.1    Saporta, G.2
  • 57
    • 84863304598 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria
    • R DEVELOPMENT CORE TEAM (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2012) R: A Language and Environment for Statistical Computing
  • 59
    • 84857059478 scopus 로고    scopus 로고
    • Model sparsity and brain pattern interpretation of classification models in neuroimaging
    • RASMUSSEN, P.M.,HANSEN, L. K.,MADSEN, K. H., CHURCHILL, N.W. and STROTHER, S. C. (2012). Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition 45 2085-2100.
    • (2012) Pattern Recognition , vol.45 , pp. 2085-2100
    • Rasmussen, P.M.1    Hansen, L.K.2    Madsen, K.H.3    Churchill, N.W.4    Strother, S.C.5
  • 61
    • 84941744520 scopus 로고    scopus 로고
    • Cross-validation and hypothesis testing in neuroimaging: An irenic comment on the exchange between Friston and Lindquist et al
    • To appear
    • REISS, P. T. (2015). Cross-validation and hypothesis testing in neuroimaging: An irenic comment on the exchange between Friston and Lindquist et al. NeuroImage. To appear.
    • (2015) NeuroImage
    • Reiss, P.T.1
  • 62
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • MR2411660
    • REISS, P. T. and OGDEN, R. T. (2007). Functional principal component regression and functional partial least squares. J. Amer. Statist. Assoc. 102 984-996. MR2411660
    • (2007) J. Amer. Statist. Assoc , vol.102 , pp. 984-996
    • Reiss, P.T.1    Ogden, R.T.2
  • 63
    • 77949757564 scopus 로고    scopus 로고
    • Functional generalized linear models with images as predictors
    • MR2756691
    • REISS, P. T. and OGDEN, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics 66 61-69. MR2756691
    • (2010) Biometrics , vol.66 , pp. 61-69
    • Reiss, P.T.1    Ogden, R.T.2
  • 68
    • 84870489618 scopus 로고    scopus 로고
    • The relevance voxel machine (RVoxM): A self-tuning Bayesian model for informative image-based prediction
    • SABUNCU, M. R., VAN LEEMPUT, K. and ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE (2012). The relevance voxel machine (RVoxM): A self-tuning Bayesian model for informative image-based prediction. IEEE Trans. Med. Imaging 31 2290-2306.
    • (2012) IEEE Trans. Med. Imaging , vol.31 , pp. 2290-2306
    • Sabuncu, M.R.1    Van Leemput, K.2    Alzheimer's Disease Neuroimaging Initiative3
  • 69
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • MR2419336
    • SHEN, H. and HUANG, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation. J. Multivariate Anal. 99 1015-1034. MR2419336
    • (2008) J. Multivariate Anal , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.Z.2
  • 70
    • 0000818474 scopus 로고
    • Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression
    • MR1064418
    • STONE, M. and BROOKS, R. J. (1990). Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. J. Roy. Statist. Soc. Ser. B 52 237-269. MR1064418
    • (1990) J. Roy. Statist. Soc. Ser. B , vol.52 , pp. 237-269
    • Stone, M.1    Brooks, R.J.2
  • 71
    • 70350702671 scopus 로고    scopus 로고
    • Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: Classification analysis using probabilistic brain atlas and machine learning algorithms
    • SUN, D., VAN ERP, T. G. M., THOMPSON, P. M., BEARDEN, C. E., DALEY, M., KUSHAN, L., HARDT, M. E., NUECHTERLEIN, K. H., TOGA, A. W. and CANNON, T. D. (2009). Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: Classification analysis using probabilistic brain atlas and machine learning algorithms. Biological Psychiatry 66 1055-1060.
    • (2009) Biological Psychiatry , vol.66 , pp. 1055-1060
    • Sun, D.1    Van Erp, T.G.M.2    Thompson, P.M.3    Bearden, C.E.4    Daley, M.5    Kushan, L.6    Hardt, M.E.7    Nuechterlein, K.H.8    Toga, A.W.9    Cannon, T.D.10
  • 72
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 75
    • 84859836564 scopus 로고    scopus 로고
    • Penalized wavelets: Embedding wavelets into semiparametric regression
    • MR2870147
    • WAND, M. P. and ORMEROD, J. T. (2011). Penalized wavelets: Embedding wavelets into semiparametric regression. Electron. J. Stat. 5 1654-1717. MR2870147
    • (2011) Electron. J. Stat , vol.5 , pp. 1654-1717
    • Wand, M.P.1    Ormerod, J.T.2
  • 76
    • 35348897501 scopus 로고    scopus 로고
    • Bayesian curve classification using wavelets
    • MR2354408
    • WANG, X., RAY, S. and MALLICK, B. K. (2007). Bayesian curve classification using wavelets. J. Amer. Statist. Assoc. 102 962-973. MR2354408
    • (2007) J. Amer. Statist. Assoc , vol.102 , pp. 962-973
    • Wang, X.1    Ray, S.2    Mallick, B.K.3
  • 78
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • WITTEN, D.M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 79
    • 0003000612 scopus 로고
    • Nonlinear estimation by iterative least square procedures
    • (Festschrift J. Neyman) (F. N. David, ed.) Wiley, London. MR0210250
    • WOLD, H. (1966). Nonlinear estimation by iterative least square procedures. In Research Papers in Statistics (Festschrift J. Neyman) (F. N. David, ed.) 411-444. Wiley, London. MR0210250
    • (1966) Research Papers in Statistics , pp. 411-444
    • Wold, H.1
  • 80
  • 81
    • 84938486870 scopus 로고    scopus 로고
    • Wavelet-based weighted LASSO and screening approaches in functional linear regression
    • To appear
    • ZHAO, Y., CHEN, H. and OGDEN, R. T. (2015). Wavelet-based weighted LASSO and screening approaches in functional linear regression. J. Comput. Graph. Statist. To appear.
    • (2015) J. Comput. Graph. Statist
    • Zhao, Y.1    Chen, H.2    Ogden, R.T.3
  • 82
    • 84865396790 scopus 로고    scopus 로고
    • Wavelet-based LASSO in functional linear regression
    • MR2970910
    • ZHAO, Y., OGDEN, R. T. and REISS, P. T. (2012). Wavelet-based LASSO in functional linear regression. J. Comput. Graph. Statist. 21 600-617. MR2970910
    • (2012) J. Comput. Graph. Statist , vol.21 , pp. 600-617
    • Zhao, Y.1    Ogden, R.T.2    Reiss, P.T.3
  • 83
    • 84890104000 scopus 로고    scopus 로고
    • Tensor regression with applications in neuroimaging data analysis
    • MR3174640
    • ZHOU, H., LI, L. and ZHU, H. (2013). Tensor regression with applications in neuroimaging data analysis. J. Amer. Statist. Assoc. 108 540-552. MR3174640
    • (2013) J. Amer. Statist. Assoc , vol.108 , pp. 540-552
    • Zhou, H.1    Li, L.2    Zhu, H.3
  • 84
    • 84871642334 scopus 로고    scopus 로고
    • Robust classification of functional and quantitative image data using functional mixed models
    • MR3040032
    • ZHU, H., BROWN, P. J. andMORRIS, J. S. (2012). Robust classification of functional and quantitative image data using functional mixed models. Biometrics 68 1260-1268. MR3040032
    • (2012) Biometrics , vol.68 , pp. 1260-1268
    • Zhu, H.1    Brown, P.J.2    Morris, J.S.3
  • 85
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • ZHU, J. and HASTIE, T. (2004). Classification of gene microarrays by penalized logistic regression. Biostatistics 5 427-443.
    • (2004) Biostatistics , vol.5 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 86
    • 77952974130 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for classification with selection of functional predictors
    • MR2758826
    • ZHU, H., VANNUCCI, M. and COX, D. D. (2010). A Bayesian hierarchical model for classification with selection of functional predictors. Biometrics 66 463-473. MR2758826
    • (2010) Biometrics , vol.66 , pp. 463-473
    • Zhu, H.1    Vannucci, M.2    Cox, D.D.3
  • 87
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • MR2279469
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 88
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • MR2137327
    • ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 301-320. MR2137327
    • (2005) J. R. Stat. Soc. Ser. B. Stat. Methodol , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 90
    • 44449144370 scopus 로고    scopus 로고
    • An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF
    • ZOU, Q.-H., ZHU, C.-Z., YANG, Y., ZUO, X.-N., LONG, X.-Y., CAO, Q.-J., WANG, Y.-F. and ZANG, Y.-F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods 172 137-141.
    • (2008) J. Neurosci. Methods , vol.172 , pp. 137-141
    • Zou, Q.-H.1    Zhu, C.-Z.2    Yang, Y.3    Zuo, X.-N.4    Long, X.-Y.5    Cao, Q.-J.6    Wang, Y.-F.7    Zang, Y.-F.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.