-
1
-
-
84872254483
-
The ADHD-200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience
-
ADHD-200 CONSORTIUM (2012). The ADHD-200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6 62.
-
(2012)
Front. Syst. Neurosci
, vol.6
, pp. 62
-
-
-
2
-
-
64849109341
-
Functional supervised classification with wavelets
-
MR2435041
-
BERLINET, A., BIAU, G. and ROUVIÈRE, L. (2008). Functional supervised classification with wavelets. Ann. I.S.U.P. 52 61-80. MR2435041
-
(2008)
Ann. I.S.U. P
, vol.52
, pp. 61-80
-
-
Berlinet, A.1
Biau, G.2
Rouvière, L.3
-
3
-
-
1542469448
-
Bayesian wavelet regression on curves with application to a spectroscopic calibration problem
-
MR1939343
-
BROWN, P. J., FEARN, T. and VANNUCCI, M. (2001). Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. J. Amer. Statist. Assoc. 96 398-408. MR1939343
-
(2001)
J. Amer. Statist. Assoc
, vol.96
, pp. 398-408
-
-
Brown, P.J.1
Fearn, T.2
Vannucci, M.3
-
4
-
-
84867122690
-
ADHD-200 global competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
-
BROWN, M. R. G., SIDHU, G. S., GREINER, R., ASGARIAN, N., BASTANI, M., SILVERSTONE, P. H., GREENSHAW, A. J. and DURSUN, S. M. (2012). ADHD-200 global competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. 6 69.
-
(2012)
Front. Syst. Neurosci
, vol.6
, pp. 69
-
-
Brown, M.R.G.1
Sidhu, G.S.2
Greiner, R.3
Asgarian, N.4
Bastani, M.5
Silverstone, P.H.6
Greenshaw, A.J.7
Dursun, S.M.8
-
5
-
-
84938534750
-
-
CAFFO, B., ELOYAN, A., HAN, F., LIU, H., MUSCHELLI, J., NEBEL, M. B., ZHAO, T. and CRAINICEANU, C. (2012). SMART thoughts on the ADHD 200 Competition. Available at http://www.smart-stats.org/?q=content/repost-our-document-adhd-competition.
-
(2012)
SMART thoughts on the ADHD 200 Competition
-
-
Caffo, B.1
Eloyan, A.2
Han, F.3
Liu, H.4
Muschelli, J.5
Nebel, M.B.6
Zhao, T.7
Crainiceanu, C.8
-
6
-
-
33847349358
-
Prediction in functional linear regression
-
MR2291496
-
CAI, T. T. and HALL, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159- 2179. MR2291496
-
(2006)
Ann. Statist
, vol.34
, pp. 2159-2179
-
-
Cai, T.T.1
Hall, P.2
-
8
-
-
0041459525
-
Spline estimators for the functional linear model
-
MR1997162
-
CARDOT, H., FERRATY, F. and SARDA, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13 571-591. MR1997162
-
(2003)
Statist. Sinica
, vol.13
, pp. 571-591
-
-
Cardot, H.1
Ferraty, F.2
Sarda, P.3
-
9
-
-
84911992679
-
Functional data classification: A wavelet approach
-
CHANG, C., CHEN, Y. and OGDEN, R. T. (2014). Functional data classification: A wavelet approach. Comput. Statist. 29 1497-1513.
-
(2014)
Comput. Statist
, vol.29
, pp. 1497-1513
-
-
Chang, C.1
Chen, Y.2
Ogden, R.T.3
-
10
-
-
84901793403
-
Robust parametric classification and variable selection by a minimum distance criterion
-
CHI, E. C. and SCOTT, D. W. (2014). Robust parametric classification and variable selection by a minimum distance criterion. J. Comput. Graph. Statist. 23 111-128.
-
(2014)
J. Comput. Graph. Statist
, vol.23
, pp. 111-128
-
-
Chi, E.C.1
Scott, D.W.2
-
11
-
-
74049093630
-
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
-
MR2751241
-
CHUN, H. and KELEŞ, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 3-25. MR2751241
-
(2010)
J. R. Stat. Soc. Ser. B. Stat. Methodol
, vol.72
, pp. 3-25
-
-
Chun, H.1
Keleş, S.2
-
12
-
-
49449106707
-
Fisher lecture: Dimension reduction in regression
-
MR2408655
-
COOK, R. D. (2007). Fisher lecture: Dimension reduction in regression. Statist. Sci. 22 1-26. MR2408655
-
(2007)
Statist. Sci
, vol.22
, pp. 1-26
-
-
Cook, R.D.1
-
13
-
-
73149109077
-
Disease state prediction from resting state functional connectivity
-
CRADDOCK, R. C., HOLTZHEIMER III, P. E., HU, X. P. and MAYBERG, H. S. (2009). Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 62 1619-1628.
-
(2009)
Magn. Reson. Med
, vol.62
, pp. 1619-1628
-
-
Craddock, R.C.1
Holtzheimer, P.E.2
Hu, X.P.3
Mayberg, H.S.4
-
14
-
-
84879092733
-
-
R package version 0.1-10
-
CRAINICEANU, C. M., REISS, P. T., GOLDSMITH, J., HUANG, L., HUO, L. and SCHEIPL, F. (2014). refund: Regression with functional data. R package version 0.1-10.
-
(2014)
Refund: Regression with functional data
-
-
Crainiceanu, C.M.1
Reiss, P.T.2
Goldsmith, J.3
Huang, L.4
Huo, L.5
Scheipl, F.6
-
15
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
MR0951745
-
DAUBECHIES, I. (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41 909-996. MR0951745
-
(1988)
Comm. Pure Appl. Math
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
16
-
-
84858298016
-
Achieving near perfect classification for functional data
-
MR2899863
-
DELAIGLE, A. and HALL, P. (2012a). Achieving near perfect classification for functional data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 267-286. MR2899863
-
(2012)
J. R. Stat. Soc. Ser. B. Stat. Methodol
, vol.74
, pp. 267-286
-
-
Delaigle, A.1
Hall, P.2
-
17
-
-
84870678371
-
Methodology and theory for partial least squares applied to functional data
-
MR3014309
-
DELAIGLE, A. and HALL, P. (2012b). Methodology and theory for partial least squares applied to functional data. Ann. Statist. 40 322-352. MR3014309
-
(2012)
Ann. Statist
, vol.40
, pp. 322-352
-
-
Delaigle, A.1
Hall, P.2
-
18
-
-
20744452472
-
Classification using generalized partial least squares
-
MR2160814
-
DING, B. and GENTLEMAN, R. (2005). Classification using generalized partial least squares. J. Comput. Graph. Statist. 14 280-298. MR2160814
-
(2005)
J. Comput. Graph. Statist
, vol.14
, pp. 280-298
-
-
Ding, B.1
Gentleman, R.2
-
19
-
-
0041958932
-
Ideal spatial adaptation by wavelet shrinkage
-
MR1311089
-
DONOHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. MR1311089
-
(1994)
Biometrika
, vol.81
, pp. 425-455
-
-
Donoho, D.L.1
Johnstone, I.M.2
-
20
-
-
84866012927
-
Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging
-
ELOYAN, A., MUSCHELLI, J., NEBEL, M. B., LIU, H., HAN, F., ZHAO, T., BARBER, A. D., JOEL, S., PEKAR, J. J., MOSTOFSKY, S. H. and CAFFO, B. (2012). Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging. Front. Syst. Neurosci. 6 61.
-
(2012)
Front. Syst. Neurosci
, vol.6
, pp. 61
-
-
Eloyan, A.1
Muschelli, J.2
Nebel, M.B.3
Liu, H.4
Han, F.5
Zhao, T.6
Barber, A.D.7
Joel, S.8
Pekar, J.J.9
Mostofsky, S.H.10
Caffo, B.11
-
21
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
MR1946581
-
FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
-
(2001)
J. Amer. Statist. Assoc
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
22
-
-
38049166097
-
On using truncated sequential probability ratio test boundaries for Monte Carlo implementation of hypothesis tests
-
MR2412490
-
FAY, M. P., KIM, H.-J. and HACHEY, M. (2007). On using truncated sequential probability ratio test boundaries for Monte Carlo implementation of hypothesis tests. J. Comput. Graph. Statist. 16 946-967. MR2412490
-
(2007)
J. Comput. Graph. Statist
, vol.16
, pp. 946-967
-
-
Fay, M.P.1
Kim, H.-J.2
Hachey, M.3
-
23
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
FRIEDMAN, J.,HASTIE, T. and TIBSHIRANI, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33 1-22.
-
(2010)
J. Stat. Softw
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
24
-
-
84938504132
-
Smooth scalar-on-image regression via spatial Bayesian variable selection
-
GOLDSMITH, J.,HUANG, L. andCRAINICEANU, C. M. (2014). Smooth scalar-on-image regression via spatial Bayesian variable selection. J. Comput. Graph. Statist. 8 1045-1064.
-
(2014)
J. Comput. Graph. Statist
, vol.8
, pp. 1045-1064
-
-
Goldsmith, J.1
Huang, L.2
Crainiceanu, C.M.3
-
25
-
-
83455181653
-
Penalized functional regression
-
MR2878950
-
GOLDSMITH, J., BOBB, J., CRAINICEANU, C. M., CAFFO, B. and REICH, D. (2011). Penalized functional regression. J. Comput. Graph. Statist. 20 830-851. MR2878950
-
(2011)
J. Comput. Graph. Statist
, vol.20
, pp. 830-851
-
-
Goldsmith, J.1
Bobb, J.2
Crainiceanu, C.M.3
Caffo, B.4
Reich, D.5
-
26
-
-
28444452344
-
Permutation tests for classification: Towards statistical significance in image-based studies
-
(C. J. Taylor and J. A. Noble, eds.) Springer, Berlin
-
GOLLAND, P. and FISCHL, B. (2003). Permutation tests for classification: Towards statistical significance in image-based studies. In Information Processing in Medical Imaging: Proceedings of the 18th International Conference (C. J. Taylor and J. A. Noble, eds.) 330-341. Springer, Berlin.
-
(2003)
Information Processing in Medical Imaging: Proceedings of the 18th International Conference
, pp. 330-341
-
-
Golland, P.1
Fischl, B.2
-
27
-
-
84874528278
-
Interpretable whole-brain prediction analysis with GraphNet
-
GROSENICK, L., KLINGENBERG, B., KATOVICH, K., KNUTSON, B. and TAYLOR, J. E. (2013). Interpretable whole-brain prediction analysis with GraphNet. NeuroImage 72 304-321.
-
(2013)
NeuroImage
, vol.72
, pp. 304-321
-
-
Grosenick, L.1
Klingenberg, B.2
Katovich, K.3
Knutson, B.4
Taylor, J.E.5
-
28
-
-
77951920655
-
Bivariate splines for spatial functional regression models
-
MR2662608
-
GUILLAS, S. and LAI, M.-J. (2010). Bivariate splines for spatial functional regression models. J. Nonparametr. Stat. 22 477-497. MR2662608
-
(2010)
J. Nonparametr. Stat
, vol.22
, pp. 477-497
-
-
Guillas, S.1
Lai, M.-J.2
-
29
-
-
35348874516
-
Methodology and convergence rates for functional linear regression
-
MR2332269
-
HALL, P. and HOROWITZ, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35 70-91. MR2332269
-
(2007)
Ann. Statist
, vol.35
, pp. 70-91
-
-
Hall, P.1
Horowitz, J.L.2
-
30
-
-
84877591069
-
Can a single brain region predict a disorder? IEEE Trans
-
HONORIO, J., TOMASI, D., GOLDSTEIN, R. Z., LEUNG, H.-C. and SAMARAS, D. (2012). Can a single brain region predict a disorder? IEEE Trans. Med. Imaging 31 2062-2072.
-
(2012)
Med. Imaging
, vol.31
, pp. 2062-2072
-
-
Honorio, J.1
Tomasi, D.2
Goldstein, R.Z.3
Leung, H.-C.4
Samaras, D.5
-
31
-
-
84880946754
-
Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes
-
HUANG, L., GOLDSMITH, J., REISS, P. T., REICH, D. S. and CRAINICEANU, C. M. (2013). Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes. NeuroImage 83 210-223.
-
(2013)
NeuroImage
, vol.83
, pp. 210-223
-
-
Huang, L.1
Goldsmith, J.2
Reiss, P.T.3
Reich, D.S.4
Crainiceanu, C.M.5
-
33
-
-
66549088006
-
On consistency and sparsity for principal components analysis in high dimensions
-
MR2751448
-
JOHNSTONE, I. M. and LU, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 104 682-693. MR2751448
-
(2009)
J. Amer. Statist. Assoc
, vol.104
, pp. 682-693
-
-
Johnstone, I.M.1
Lu, A.Y.2
-
34
-
-
84870064521
-
Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
-
KAPUR, S., PHILLIPS, A. G. and INSEL, T. R. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17 1174-1179.
-
(2012)
Mol. Psychiatry
, vol.17
, pp. 1174-1179
-
-
Kapur, S.1
Phillips, A.G.2
Insel, T.R.3
-
35
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
MALLAT, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11 674-693.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.11
, pp. 674-693
-
-
Mallat, S.G.1
-
37
-
-
77956637967
-
Wavelet-based functional linear mixed models: An application to measurement error-corrected distributed lag models
-
MALLOY, E. J.,MORRIS, J. S., ADAR, S. D., SUH, H., GOLD, D. R. and COULL, B. A. (2010). Wavelet-based functional linear mixed models: An application to measurement error-corrected distributed lag models. Biostatistics 11 432-452.
-
(2010)
Biostatistics
, vol.11
, pp. 432-452
-
-
Malloy, E.J.1
Morris, J.S.2
Adar, S.D.3
Suh, H.4
Gold, D.R.5
Coull, B.A.6
-
38
-
-
0242718698
-
Iteratively reweighted partial least squares estimation for generalized linear regression
-
MARX, B. D. (1996). Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38 374-381.
-
(1996)
Technometrics
, vol.38
, pp. 374-381
-
-
Marx, B.D.1
-
39
-
-
0033079479
-
Generalized linear regression on sampled signals and curves: A P-spline approach
-
MARX, B. D. and EILERS, P. H. C. (1999). Generalized linear regression on sampled signals and curves: A P-spline approach. Technometrics 41 1-13.
-
(1999)
Technometrics
, vol.41
, pp. 1-13
-
-
Marx, B.D.1
Eilers, P.H.C.2
-
40
-
-
13444257535
-
Multidimensional penalized signal regression
-
MR2135789
-
MARX, B. D. and EILERS, P. H. C. (2005). Multidimensional penalized signal regression. Technometrics 47 13-22. MR2135789
-
(2005)
Technometrics
, vol.47
, pp. 13-22
-
-
Marx, B.D.1
Eilers, P.H.C.2
-
41
-
-
0000957593
-
Principal components regression in exploratory statistical research
-
MASSY, W. F. (1965). Principal components regression in exploratory statistical research. J. Amer. Statist. Assoc. 60 234-256.
-
(1965)
J. Amer. Statist. Assoc
, vol.60
, pp. 234-256
-
-
Massy, W.F.1
-
44
-
-
84856284445
-
Open neuroscience solutions for the connectome-wide association era
-
MILHAM, M. P. (2012). Open neuroscience solutions for the connectome-wide association era. Neuron 73 214-218.
-
(2012)
Neuron
, vol.73
, pp. 214-218
-
-
Milham, M.P.1
-
45
-
-
80054689503
-
Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data
-
MR2840180
-
MORRIS, J. S., BALADANDAYUTHAPANI, V., HERRICK, R. C., SANNA, P. and GUTSTEIN, H. (2011). Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. Ann. Appl. Stat. 5 894-923. MR2840180
-
(2011)
Ann. Appl. Stat
, vol.5
, pp. 894-923
-
-
Morris, J.S.1
Baladandayuthapani, V.2
Herrick, R.C.3
Sanna, P.4
Gutstein, H.5
-
46
-
-
19744372814
-
Generalized functional linear models
-
MR2163159
-
MÜLLER, H.-G. and STADTMÜLLER, U. (2005). Generalized functional linear models. Ann. Statist. 33 774-805. MR2163159
-
(2005)
Ann. Statist
, vol.33
, pp. 774-805
-
-
Müller, H.-G.1
Stadtmüller, U.2
-
47
-
-
27644451742
-
The prediction error in CLS and PLS: The importance of feature selection prior to multivariate calibration
-
NADLER, B. and COIFMAN, R. R. (2005). The prediction error in CLS and PLS: The importance of feature selection prior to multivariate calibration. J. Chemom. 19 107-118.
-
(2005)
J. Chemom
, vol.19
, pp. 107-118
-
-
Nadler, B.1
Coifman, R.R.2
-
50
-
-
0036166439
-
Tumor classification by partial least squares using microarray gene expression data
-
NGUYEN, D. V. and ROCKE, D. M. (2002). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 39-50.
-
(2002)
Bioinformatics
, vol.18
, pp. 39-50
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
51
-
-
84863008840
-
Multiple testing corrections, nonparametric methods, and random field theory
-
NICHOLS, T. E. (2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage 62 811-815.
-
(2012)
NeuroImage
, vol.62
, pp. 811-815
-
-
Nichols, T.E.1
-
53
-
-
77954676863
-
Permutation tests for studying classifier performance
-
MR2660654
-
OJALA, M. and GARRIGA, G. C. (2010). Permutation tests for studying classifier performance. J. Mach. Learn. Res. 11 1833-1863. MR2660654
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 1833-1863
-
-
Ojala, M.1
Garriga, G.C.2
-
55
-
-
14544305522
-
A permutation test for inference in logistic regression with small- and moderate-sized data sets
-
MR2134534
-
POTTER, D. M. (2005). A permutation test for inference in logistic regression with small- and moderate-sized data sets. Stat. Med. 24 693-708. MR2134534
-
(2005)
Stat. Med
, vol.24
, pp. 693-708
-
-
Potter, D.M.1
-
56
-
-
10144244015
-
PLS regression on a stochastic process
-
MR2134488
-
PREDA, C. and SAPORTA, G. (2005). PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 149-158. MR2134488
-
(2005)
Comput. Statist. Data Anal
, vol.48
, pp. 149-158
-
-
Preda, C.1
Saporta, G.2
-
57
-
-
84863304598
-
-
R Foundation for Statistical Computing, Vienna, Austria
-
R DEVELOPMENT CORE TEAM (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
-
(2012)
R: A Language and Environment for Statistical Computing
-
-
-
59
-
-
84857059478
-
Model sparsity and brain pattern interpretation of classification models in neuroimaging
-
RASMUSSEN, P.M.,HANSEN, L. K.,MADSEN, K. H., CHURCHILL, N.W. and STROTHER, S. C. (2012). Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition 45 2085-2100.
-
(2012)
Pattern Recognition
, vol.45
, pp. 2085-2100
-
-
Rasmussen, P.M.1
Hansen, L.K.2
Madsen, K.H.3
Churchill, N.W.4
Strother, S.C.5
-
61
-
-
84941744520
-
Cross-validation and hypothesis testing in neuroimaging: An irenic comment on the exchange between Friston and Lindquist et al
-
To appear
-
REISS, P. T. (2015). Cross-validation and hypothesis testing in neuroimaging: An irenic comment on the exchange between Friston and Lindquist et al. NeuroImage. To appear.
-
(2015)
NeuroImage
-
-
Reiss, P.T.1
-
62
-
-
35348906983
-
Functional principal component regression and functional partial least squares
-
MR2411660
-
REISS, P. T. and OGDEN, R. T. (2007). Functional principal component regression and functional partial least squares. J. Amer. Statist. Assoc. 102 984-996. MR2411660
-
(2007)
J. Amer. Statist. Assoc
, vol.102
, pp. 984-996
-
-
Reiss, P.T.1
Ogden, R.T.2
-
63
-
-
77949757564
-
Functional generalized linear models with images as predictors
-
MR2756691
-
REISS, P. T. and OGDEN, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics 66 61-69. MR2756691
-
(2010)
Biometrics
, vol.66
, pp. 61-69
-
-
Reiss, P.T.1
Ogden, R.T.2
-
64
-
-
84938495493
-
-
REISS, P. T., HUO, L., ZHAO, Y., KELLY, C. and OGDEN, R. T. (2015). Supplement to "Waveletdomain regression and predictive inference in psychiatric neuroimaging." DOI:10.1214/15- AOAS829SUPP.
-
(2015)
Supplement to "Waveletdomain regression and predictive inference in psychiatric neuroimaging"
-
-
Reiss, P.T.1
Huo, L.2
Zhao, Y.3
Kelly, C.4
Ogden, R.T.5
-
67
-
-
0032034220
-
Statistical analysis of functional MRI data in the wavelet domain
-
RUTTIMANN, U. E., UNSER, M., RAWLINGS, R. R., RIO, D., RAMSEY, N. F., MATTAY, V. S., HOMMER, D. W., FRANK, J. A. andWEINBERGER, D. R. (1998). Statistical analysis of functional MRI data in the wavelet domain. IEEE Trans. Med. Imaging 17 142-154.
-
(1998)
IEEE Trans. Med. Imaging
, vol.17
, pp. 142-154
-
-
Ruttimann, U.E.1
Unser, M.2
Rawlings, R.R.3
Rio, D.4
Ramsey, N.F.5
Mattay, V.S.6
Hommer, D.W.7
Frank, J.A.8
Weinberger, D.R.9
-
69
-
-
43049086717
-
Sparse principal component analysis via regularized low rank matrix approximation
-
MR2419336
-
SHEN, H. and HUANG, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation. J. Multivariate Anal. 99 1015-1034. MR2419336
-
(2008)
J. Multivariate Anal
, vol.99
, pp. 1015-1034
-
-
Shen, H.1
Huang, J.Z.2
-
70
-
-
0000818474
-
Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression
-
MR1064418
-
STONE, M. and BROOKS, R. J. (1990). Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. J. Roy. Statist. Soc. Ser. B 52 237-269. MR1064418
-
(1990)
J. Roy. Statist. Soc. Ser. B
, vol.52
, pp. 237-269
-
-
Stone, M.1
Brooks, R.J.2
-
71
-
-
70350702671
-
Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: Classification analysis using probabilistic brain atlas and machine learning algorithms
-
SUN, D., VAN ERP, T. G. M., THOMPSON, P. M., BEARDEN, C. E., DALEY, M., KUSHAN, L., HARDT, M. E., NUECHTERLEIN, K. H., TOGA, A. W. and CANNON, T. D. (2009). Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: Classification analysis using probabilistic brain atlas and machine learning algorithms. Biological Psychiatry 66 1055-1060.
-
(2009)
Biological Psychiatry
, vol.66
, pp. 1055-1060
-
-
Sun, D.1
Van Erp, T.G.M.2
Thompson, P.M.3
Bearden, C.E.4
Daley, M.5
Kushan, L.6
Hardt, M.E.7
Nuechterlein, K.H.8
Toga, A.W.9
Cannon, T.D.10
-
72
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
MR1379242
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
-
(1996)
J. Roy. Statist. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
73
-
-
34548546672
-
WSPM: Wavelet-based statistical parametric mapping
-
VAN DE VILLE, D., SEGHIER, M. L., LAZEYRAS, F., BLU, T. and UNSER, M. (2007). WSPM: Wavelet-based statistical parametric mapping. NeuroImage 37 1205-1217.
-
(2007)
NeuroImage
, vol.37
, pp. 1205-1217
-
-
Van De Ville, D.1
Seghier, M.L.2
Lazeyras, F.3
Blu, T.4
Unser, M.5
-
75
-
-
84859836564
-
Penalized wavelets: Embedding wavelets into semiparametric regression
-
MR2870147
-
WAND, M. P. and ORMEROD, J. T. (2011). Penalized wavelets: Embedding wavelets into semiparametric regression. Electron. J. Stat. 5 1654-1717. MR2870147
-
(2011)
Electron. J. Stat
, vol.5
, pp. 1654-1717
-
-
Wand, M.P.1
Ormerod, J.T.2
-
76
-
-
35348897501
-
Bayesian curve classification using wavelets
-
MR2354408
-
WANG, X., RAY, S. and MALLICK, B. K. (2007). Bayesian curve classification using wavelets. J. Amer. Statist. Assoc. 102 962-973. MR2354408
-
(2007)
J. Amer. Statist. Assoc
, vol.102
, pp. 962-973
-
-
Wang, X.1
Ray, S.2
Mallick, B.K.3
-
77
-
-
84903772832
-
Regularized 3D functional regression for brain image data via Haar wavelets
-
WANG, X., NAN, B., ZHU, J., KOEPPE, R. and THE ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE (2014). Regularized 3D functional regression for brain image data via Haar wavelets. Ann. Appl. Stat. 8 1045-1064.
-
(2014)
Ann. Appl. Stat
, vol.8
, pp. 1045-1064
-
-
Wang, X.1
Nan, B.2
Zhu, J.3
Koeppe, R.4
Alzheimer's disease Neuroimaging Initiative5
-
78
-
-
70149096300
-
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
-
WITTEN, D.M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 515-534.
-
(2009)
Biostatistics
, vol.10
, pp. 515-534
-
-
Witten, D.M.1
Tibshirani, R.2
Hastie, T.3
-
79
-
-
0003000612
-
Nonlinear estimation by iterative least square procedures
-
(Festschrift J. Neyman) (F. N. David, ed.) Wiley, London. MR0210250
-
WOLD, H. (1966). Nonlinear estimation by iterative least square procedures. In Research Papers in Statistics (Festschrift J. Neyman) (F. N. David, ed.) 411-444. Wiley, London. MR0210250
-
(1966)
Research Papers in Statistics
, pp. 411-444
-
-
Wold, H.1
-
80
-
-
80051812489
-
Abnormal spontaneous brain activity in medication-naïve ADHD children: A resting state fMRI study
-
YANG, H.,WU, Q.-Z.,GUO, L.-T., LI, Q.-Q., LONG, X.-Y.,HUANG, X.-Q.,CHAN, R. C. K. and GONG, Q.-Y. (2011). Abnormal spontaneous brain activity in medication-naïve ADHD children: A resting state fMRI study. Neurosci. Lett. 502 89-93.
-
(2011)
Neurosci. Lett
, vol.502
, pp. 89-93
-
-
Yang, H.1
Wu, Q.-Z.2
Guo, L.-T.3
Li, Q.-Q.4
Long, X.-Y.5
Huang, X.-Q.6
Chan, R.C.K.7
Gong, Q.-Y.8
-
81
-
-
84938486870
-
Wavelet-based weighted LASSO and screening approaches in functional linear regression
-
To appear
-
ZHAO, Y., CHEN, H. and OGDEN, R. T. (2015). Wavelet-based weighted LASSO and screening approaches in functional linear regression. J. Comput. Graph. Statist. To appear.
-
(2015)
J. Comput. Graph. Statist
-
-
Zhao, Y.1
Chen, H.2
Ogden, R.T.3
-
82
-
-
84865396790
-
Wavelet-based LASSO in functional linear regression
-
MR2970910
-
ZHAO, Y., OGDEN, R. T. and REISS, P. T. (2012). Wavelet-based LASSO in functional linear regression. J. Comput. Graph. Statist. 21 600-617. MR2970910
-
(2012)
J. Comput. Graph. Statist
, vol.21
, pp. 600-617
-
-
Zhao, Y.1
Ogden, R.T.2
Reiss, P.T.3
-
83
-
-
84890104000
-
Tensor regression with applications in neuroimaging data analysis
-
MR3174640
-
ZHOU, H., LI, L. and ZHU, H. (2013). Tensor regression with applications in neuroimaging data analysis. J. Amer. Statist. Assoc. 108 540-552. MR3174640
-
(2013)
J. Amer. Statist. Assoc
, vol.108
, pp. 540-552
-
-
Zhou, H.1
Li, L.2
Zhu, H.3
-
84
-
-
84871642334
-
Robust classification of functional and quantitative image data using functional mixed models
-
MR3040032
-
ZHU, H., BROWN, P. J. andMORRIS, J. S. (2012). Robust classification of functional and quantitative image data using functional mixed models. Biometrics 68 1260-1268. MR3040032
-
(2012)
Biometrics
, vol.68
, pp. 1260-1268
-
-
Zhu, H.1
Brown, P.J.2
Morris, J.S.3
-
85
-
-
15944363312
-
Classification of gene microarrays by penalized logistic regression
-
ZHU, J. and HASTIE, T. (2004). Classification of gene microarrays by penalized logistic regression. Biostatistics 5 427-443.
-
(2004)
Biostatistics
, vol.5
, pp. 427-443
-
-
Zhu, J.1
Hastie, T.2
-
86
-
-
77952974130
-
A Bayesian hierarchical model for classification with selection of functional predictors
-
MR2758826
-
ZHU, H., VANNUCCI, M. and COX, D. D. (2010). A Bayesian hierarchical model for classification with selection of functional predictors. Biometrics 66 463-473. MR2758826
-
(2010)
Biometrics
, vol.66
, pp. 463-473
-
-
Zhu, H.1
Vannucci, M.2
Cox, D.D.3
-
87
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
MR2279469
-
ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
-
(2006)
J. Amer. Statist. Assoc
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
88
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
MR2137327
-
ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 301-320. MR2137327
-
(2005)
J. R. Stat. Soc. Ser. B. Stat. Methodol
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
90
-
-
44449144370
-
An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF
-
ZOU, Q.-H., ZHU, C.-Z., YANG, Y., ZUO, X.-N., LONG, X.-Y., CAO, Q.-J., WANG, Y.-F. and ZANG, Y.-F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods 172 137-141.
-
(2008)
J. Neurosci. Methods
, vol.172
, pp. 137-141
-
-
Zou, Q.-H.1
Zhu, C.-Z.2
Yang, Y.3
Zuo, X.-N.4
Long, X.-Y.5
Cao, Q.-J.6
Wang, Y.-F.7
Zang, Y.-F.8
|