메뉴 건너뛰기




Volumn 31, Issue 11, 2015, Pages 1762-1770

Gaussian process test for high-throughput sequencing time series: Application to experimental evolution

Author keywords

[No Author keywords available]

Indexed keywords

ALLELE; ANIMAL; COMPUTER PROGRAM; DROSOPHILA; GENE FREQUENCY; GENETICS; GENOMICS; HIGH THROUGHPUT SEQUENCING; MOLECULAR EVOLUTION; NORMAL DISTRIBUTION; PROCEDURES; SINGLE NUCLEOTIDE POLYMORPHISM; STATISTICAL MODEL;

EID: 84941687465     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv014     Document Type: Conference Paper
Times cited : (31)

References (33)
  • 2
    • 84878003103 scopus 로고    scopus 로고
    • Sorad: A systems biology approach to predict and modulate dynamic signaling pathway response from phosphoproteome timecourse measurements
    • Aïjö, T. et al. ( 2013) Sorad: A systems biology approach to predict and modulate dynamic signaling pathway response from phosphoproteome timecourse measurements. Bioinformatics, 29, 1283-1291.
    • (2013) Bioinformatics , vol.29 , pp. 1283-1291
    • Aïjö, T.1
  • 3
    • 84897858777 scopus 로고    scopus 로고
    • The power to detect quantitative trait loci using resequenced, experimentally evolved populations of diploid, sexual organisms
    • Baldwin-Brown, J. G. et al. (2014) The power to detect quantitative trait loci using resequenced, experimentally evolved populations of diploid, sexual organisms. Mol. Biol. Evol. , 31, 1040-1055.
    • (2014) Mol. Biol. Evol. , vol.31 , pp. 1040-1055
    • Baldwin-Brown, J.G.1
  • 4
    • 70350641005 scopus 로고    scopus 로고
    • Genome evolution and adaptation in a long-term experiment with Escherichia coli
    • Barrick, J. E. et al. (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 461, 1243-1247.
    • (2009) Nature , vol.461 , pp. 1243-1247
    • Barrick, J.E.1
  • 5
    • 52049123852 scopus 로고    scopus 로고
    • Estimation of 2Nes from temporal allele frequency data
    • Bollback, J. P. et al. (2008) Estimation of 2Nes from temporal allele frequency data. Genetics, 179, 497-502.
    • (2008) Genetics , vol.179 , pp. 497-502
    • Bollback, J.P.1
  • 6
    • 77957346489 scopus 로고    scopus 로고
    • Genome-wide analysis of a long-term evolution experiment with Drosophila
    • Burke, M. et al. (2010) Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 467, 587-590.
    • (2010) Nature , vol.467 , pp. 587-590
    • Burke, M.1
  • 7
    • 84867554607 scopus 로고    scopus 로고
    • What paths do advantageous alleles take during short-term evolutionary change?
    • Burke, M. K. and Long, A. (2012) What paths do advantageous alleles take during short-term evolutionary change? Mol. Ecol. , 21, 4913-416.
    • (2012) Mol. Ecol. , vol.21 , pp. 4913-5416
    • Burke, M.K.1    Long, A.2
  • 8
    • 80053928843 scopus 로고    scopus 로고
    • Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements
    • Cooke, E. J. et al. (2011) Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements. BMC Bioinformatics, 12, 399.
    • (2011) BMC Bioinformatics , vol.12 , pp. 399
    • Cooke, E.J.1
  • 9
    • 77954656491 scopus 로고    scopus 로고
    • Drosophila melanogaster recombination rate calculator
    • Fiston-Lavier, A. S. et al. (2010) Drosophila melanogaster recombination rate calculator. Gene, 463, 18-20.
    • (2010) Gene , vol.463 , pp. 18-20
    • Fiston-Lavier, A.S.1
  • 10
    • 49549105346 scopus 로고    scopus 로고
    • Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities
    • Gao, P. et al. (2008) Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities. Bioinformatics, 24, i70-i75.
    • (2008) Bioinformatics , vol.24 , pp. i70-i75
    • Gao, P.1
  • 11
    • 84883634438 scopus 로고    scopus 로고
    • Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters
    • Hensman, J. et al. (2013) Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinformatics, 14, 252.
    • (2013) BMC Bioinformatics , vol.14 , pp. 252
    • Hensman, J.1
  • 12
    • 0013979181 scopus 로고
    • The effect of linkage on limits to artificial selection
    • Hill, W. G. and Robertson, A. (1966) The effect of linkage on limits to artificial selection. Genet. Res. , 8, 269-294.
    • (1966) Genet. Res. , vol.8 , pp. 269-294
    • Hill, W.G.1    Robertson, A.2
  • 13
    • 77952328474 scopus 로고    scopus 로고
    • Model-based method for transcription factor target identification with limited data
    • Honkela, A. et al. (2010) Model-based method for transcription factor target identification with limited data. Proc. Natl Acad. Sci. USA, 107, 7793-7798.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 7793-7798
    • Honkela, A.1
  • 14
    • 84858419168 scopus 로고    scopus 로고
    • Quantifying selection acting on a complex trait using allele frequency time series data
    • Illingworth, C. J. R. et al. (2012) Quantifying selection acting on a complex trait using allele frequency time series data. Mol. Biol. Evol. , 29, 1187-1197.
    • (2012) Mol. Biol. Evol. , vol.29 , pp. 1187-1197
    • Illingworth, C.J.R.1
  • 15
    • 84871303564 scopus 로고    scopus 로고
    • Evolutionary inference for function-valued traits: Gaussian process regression on phylogenies
    • Jones, N. S. and Moriarty, J. (2013) Evolutionary inference for function-valued traits: Gaussian process regression on phylogenies. J. R. Soc. Interface, 10, 20120616.
    • (2013) J. R. Soc. Interface , vol.10 , pp. 20120616
    • Jones, N.S.1    Moriarty, J.2
  • 16
    • 79956211692 scopus 로고    scopus 로고
    • A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression
    • Kalaitzis, A. A. and Lawrence, N. D. (2011) A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. BMC Bioinformatics, 12, 180.
    • (2011) BMC Bioinformatics , vol.12 , pp. 180
    • Kalaitzis, A.A.1    Lawrence, N.D.2
  • 17
    • 84865866440 scopus 로고    scopus 로고
    • Experimental evolution
    • Kawecki, T. J. et al. (2012) Experimental evolution. Trends. Ecol. Evol. , 27, 547-560.
    • (2012) Trends. Ecol. Evol. , vol.27 , pp. 547-560
    • Kawecki, T.J.1
  • 18
    • 65549161909 scopus 로고    scopus 로고
    • Gaussian process regression bootstrapping: Exploring the effects of uncertainty in time course data
    • Kirk, P. D. W. and Stumpf, M. P. H. (2009) Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data. Bioinformatics, 25, 1300-1306.
    • (2009) Bioinformatics , vol.25 , pp. 1300-1306
    • Kirk, P.D.W.1    Stumpf, M.P.H.2
  • 19
    • 84893126398 scopus 로고    scopus 로고
    • A guide for the design of evolve and resequencing studies
    • Kofler, R. and Schlötterer, C. (2014) A guide for the design of evolve and resequencing studies. Mol. Biol. Evol. , 31, 474-483.
    • (2014) Mol. Biol. Evol. , vol.31 , pp. 474-483
    • Kofler, R.1    Schlötterer, C.2
  • 20
    • 83355175374 scopus 로고    scopus 로고
    • PoPoolation2: Identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq)
    • Kofler, R. et al. (2011) PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics, 27, 3435-3436.
    • (2011) Bioinformatics , vol.27 , pp. 3435-3436
    • Kofler, R.1
  • 21
    • 84883132678 scopus 로고    scopus 로고
    • Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations
    • Lang, G. I. et al. (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature, 500, 571-574.
    • (2013) Nature , vol.500 , pp. 571-574
    • Lang, G.I.1
  • 22
    • 77951941265 scopus 로고    scopus 로고
    • Estimating replicate time shifts using Gaussian process regression
    • Liu, Q. et al. (2010) Estimating replicate time shifts using Gaussian process regression. Bioinformatics, 26, 770-776.
    • (2010) Bioinformatics , vol.26 , pp. 770-776
    • Liu, Q.1
  • 23
    • 84856560317 scopus 로고    scopus 로고
    • Gaussian process modelling for bicoid mRNA regulation in spatio-temporal Bicoid profile
    • Liu, W. and Niranjan, M. (2012) Gaussian process modelling for bicoid mRNA regulation in spatio-temporal Bicoid profile. Bioinformatics, 28, 366-372.
    • (2012) Bioinformatics , vol.28 , pp. 366-372
    • Liu, W.1    Niranjan, M.2
  • 25
    • 84867574655 scopus 로고    scopus 로고
    • Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles
    • Orozco-terWengel, P. et al. (2012) Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol. Ecol. , 21, 4931-4941.
    • (2012) Mol. Ecol. , vol.21 , pp. 4931-4941
    • Orozco-terWengel, P.1
  • 26
    • 84875918487 scopus 로고    scopus 로고
    • Gaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies
    • Palacios, J. A. and Minin, V. N. (2013) Gaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies. Biometrics, 69, 8-18.
    • (2013) Biometrics , vol.69 , pp. 8-18
    • Palacios, J.A.1    Minin, V.N.2
  • 28
    • 77950803115 scopus 로고    scopus 로고
    • A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series
    • Stegle, O. et al. (2010) A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series. J. Comput. Biol. , 17, 355-367.
    • (2010) J. Comput. Biol. , vol.17 , pp. 355-367
    • Stegle, O.1
  • 29
    • 84861535774 scopus 로고    scopus 로고
    • Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison
    • Titsias, M. K. et al. (2012) Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison. BMC Syst. Biol. , 6, 53.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 53
    • Titsias, M.K.1
  • 30
    • 84893147360 scopus 로고    scopus 로고
    • Massive habitat-specific genomic response in D. Melanogaster populations during experimental evolution in hot and cold environments
    • Tobler, R. et al. (2014) Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol. Biol. Evol. , 31, 364-375.
    • (2014) Mol. Biol. Evol. , vol.31 , pp. 364-375
    • Tobler, R.1
  • 31
    • 79953735688 scopus 로고    scopus 로고
    • Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster
    • Turner, T. et al. (2011) Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet. , 7, e1001336.
    • (2011) PLoS Genet. , vol.7 , pp. e1001336
    • Turner, T.1
  • 32
    • 33750683623 scopus 로고    scopus 로고
    • Flexible temporal expression profile modelling using the Gaussian process
    • Yuan, M. (2006) Flexible temporal expression profile modelling using the Gaussian process. Comput. Statist. Data Anal. , 51, 1754-1764.
    • (2006) Comput. Statist. Data Anal. , vol.51 , pp. 1754-1764
    • Yuan, M.1
  • 33
    • 79952291784 scopus 로고    scopus 로고
    • Experimental selection of hypoxia-tolerant Drosophila melanogaster
    • Zhou, D. et al. (2011) Experimental selection of hypoxia-tolerant Drosophila melanogaster. Proc. Natl Acad. Sci. USA, 7, 2349-2354.
    • (2011) Proc. Natl Acad. Sci. USA , vol.7 , pp. 2349-2354
    • Zhou, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.