메뉴 건너뛰기




Volumn 29, Issue 10, 2013, Pages 1283-1291

Sorad: A systems biology approach to predict and modulate dynamic signaling pathway response from phosphoproteome time-course measurements

Author keywords

[No Author keywords available]

Indexed keywords

PHOSPHOPROTEIN; PROTEIN KINASE B;

EID: 84878003103     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt130     Document Type: Article
Times cited : (13)

References (26)
  • 1
    • 70449375094 scopus 로고    scopus 로고
    • Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
    • Aijo, T. and Lahdesmaki, H. (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics, 25, 2937-2944.
    • (2009) Bioinformatics , vol.25 , pp. 2937-2944
    • Aijo, T.1    Lahdesmaki, H.2
  • 2
    • 33750533388 scopus 로고    scopus 로고
    • Physicochemical modelling of cell signalling pathways
    • Aldridge, B.B. et al. (2006) Physicochemical modelling of cell signalling pathways. Nat. Cell Biol., 8, 1195-1203.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1195-1203
    • Aldridge, B.B.1
  • 3
    • 65349179556 scopus 로고    scopus 로고
    • Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/Insulin- induced signaling
    • Aldridge, B.B. et al. (2009) Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/Insulin-induced signaling. PLoS Comput. Biol., 5, e1000340.
    • (2009) PLoS Comput. Biol. , vol.5
    • Aldridge, B.B.1
  • 4
    • 77956554551 scopus 로고    scopus 로고
    • Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes
    • Alexopoulos, L.G. et al. (2010) Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol. Cell Proteomics, 9, 1849-1865.
    • (2010) Mol. Cell Proteomics , vol.9 , pp. 1849-1865
    • Alexopoulos, L.G.1
  • 5
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal, M. et al. (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 22, 815-822.
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1
  • 6
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau, R. et al. (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol., 7, R36.
    • (2006) Genome Biol. , vol.7
    • Bonneau, R.1
  • 7
    • 0037449711 scopus 로고    scopus 로고
    • BMS-345541 is a highly selective inhibitor of i kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice
    • Burke, J.R. et al. (2003) BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J. Biol. Chem., 278, 1450-1456.
    • (2003) J. Biol. Chem. , vol.278 , pp. 1450-1456
    • Burke, J.R.1
  • 8
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches
    • Cantone, I. et al. (2009) A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches. Cell, 137, 172-181.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1
  • 9
    • 72949108077 scopus 로고    scopus 로고
    • Pairing computation with experimentation: A powerful coupling for understanding T cell signalling
    • Chakraborty, A.K. and Das, J. (2010) Pairing computation with experimentation: a powerful coupling for understanding T cell signalling. Nat. Rev. Immunol., 10, 59-71.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 59-71
    • Chakraborty, A.K.1    Das, J.2
  • 10
    • 74049127274 scopus 로고    scopus 로고
    • Integration of a phosphatase cascade with the mitogen-activated protein kinase pathway provides for a novel signal processing function
    • Chaudhri, V.K. et al. (2010) Integration of a phosphatase cascade with the mitogen-activated protein kinase pathway provides for a novel signal processing function. J. Biol. Chem., 285, 1296-1310.
    • (2010) J. Biol. Chem. , vol.285 , pp. 1296-1310
    • Chaudhri, V.K.1
  • 11
    • 59749095009 scopus 로고    scopus 로고
    • Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer
    • Chin, Y.R. and Toker, A. (2009) Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal., 21, 470-476.
    • (2009) Cell Signal. , vol.21 , pp. 470-476
    • Chin, Y.R.1    Toker, A.2
  • 12
    • 77958516401 scopus 로고    scopus 로고
    • A Boolean approach to linear prediction for signaling network modeling
    • Eduati, F. et al. (2010) A Boolean approach to linear prediction for signaling network modeling. PLoS One, 5, e12789.
    • (2010) PLoS One , vol.5
    • Eduati, F.1
  • 13
    • 0037073679 scopus 로고    scopus 로고
    • Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex
    • Gao, Z. et al. (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J. Biol. Chem., 277, 48115-48121.
    • (2002) J. Biol. Chem. , vol.277 , pp. 48115-48121
    • Gao, Z.1
  • 14
    • 49549105346 scopus 로고    scopus 로고
    • Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities
    • Gao, P. et al. (2008) Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities. Bioinformatics, 24, i70-i75.
    • (2008) Bioinformatics , vol.24
    • Gao, P.1
  • 15
    • 77952328474 scopus 로고    scopus 로고
    • Model-based method for transcription factor target identification with limited data
    • Honkela, A. et al. (2010) Model-based method for transcription factor target identification with limited data. Proc. Natl Acad. Sci. USA, 107, 7793-7798.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 7793-7798
    • Honkela, A.1
  • 16
    • 14244256097 scopus 로고    scopus 로고
    • Increased activation of the mammalian target of rapa-mycin pathway in liver and skeletal muscle of obese rats: Possible involvement in obesity-linked insulin resistance
    • Khamzina, L. et al. (2005) Increased activation of the mammalian target of rapa-mycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology, 146, 1473-1481.
    • (2005) Endocrinology , vol.146 , pp. 1473-1481
    • Khamzina, L.1
  • 17
    • 34250788809 scopus 로고    scopus 로고
    • AKT/PKB signaling: Navigating downstream
    • Manning, B.D. and Cantley, L.C. (2007) AKT/PKB signaling: navigating downstream. Cell, 129, 1261-1274.
    • (2007) Cell , vol.129 , pp. 1261-1274
    • Manning, B.D.1    Cantley, L.C.2
  • 18
    • 74549168922 scopus 로고    scopus 로고
    • Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data
    • Mitsos, A. (2009) Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput. Biol., 5, e1000591.
    • (2009) PLoS Comput. Biol. , vol.5
    • Mitsos, A.1
  • 19
    • 84863518591 scopus 로고    scopus 로고
    • Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
    • Penfold, C.A. et al. (2012) Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics, 28, i233-i241.
    • (2012) Bioinformatics , vol.28
    • Penfold, C.A.1
  • 20
    • 80052592949 scopus 로고    scopus 로고
    • Crowdsourcing network inference: The DREAM predictive signaling network challenge
    • Prill, R.J. et al. (2011) Crowdsourcing network inference: the DREAM predictive signaling network challenge. Sci. Signal., 4, mr7.
    • (2011) Sci. Signal. , vol.4
    • Prill, R.J.1
  • 22
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K. et al. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 23
    • 0036772705 scopus 로고    scopus 로고
    • Gene perturbation and intervention in probabilistic Boolean networks
    • Shmulevich, I. et al. (2002) Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics, 18, 1319-1331.
    • (2002) Bioinformatics , vol.18 , pp. 1319-1331
    • Shmulevich, I.1
  • 24
    • 71449120701 scopus 로고    scopus 로고
    • Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction
    • Saez-Rodriguez, J. et al. (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol., 5, 331.
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 331
    • Saez-Rodriguez, J.1
  • 25
    • 84877936345 scopus 로고    scopus 로고
    • Academy eBriefings
    • The New York Academic of Sciences 28 March 2013, date last accessed
    • The New York Academic of Sciences. (2009) Academy eBriefings. In RECOMB regulatory Genomics/Systems Biology/DREAM conference 2009. http://www.nyas.org/ publications/ebriefings/Detail.aspx?cid=40d18ef4-6939-4deb-accc-b5e4516d78a0 (28 March 2013, date last accessed).
    • (2009) RECOMB Regulatory Genomics/Systems Biology/DREAM Conference 2009
  • 26
    • 84861535774 scopus 로고    scopus 로고
    • Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison
    • Titsias, M. et al. (2012) Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison. BMC Syst. Biol., 6, 53.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 53
    • Titsias, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.