메뉴 건너뛰기




Volumn 78, Issue , 2016, Pages 65-74

A decentralized training algorithm for Echo State Networks in distributed big data applications

Author keywords

Alternating Direction Method of Multipliers; Big data; Distributed learning; Echo State Network; Recurrent neural network

Indexed keywords

ALGORITHMS; RECURRENT NEURAL NETWORKS;

EID: 84940676201     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2015.07.006     Document Type: Article
Times cited : (103)

References (55)
  • 2
    • 84904609053 scopus 로고    scopus 로고
    • Distributed detection and estimation in wireless sensor networks
    • Elsevier, R. Chellapa, S. Theodoridis (Eds.)
    • Barbarossa S., Sardellitti S., Di Lorenzo P. Distributed detection and estimation in wireless sensor networks. E-Reference signal processing 2013, 329-408. Elsevier. R. Chellapa, S. Theodoridis (Eds.).
    • (2013) E-Reference signal processing , pp. 329-408
    • Barbarossa, S.1    Sardellitti, S.2    Di Lorenzo, P.3
  • 4
    • 84871651156 scopus 로고    scopus 로고
    • Reservoir computing and extreme learning machines for non-linear time-series data analysis
    • Butcher J.B., Verstraeten D., Schrauwen B., Day C.R., Haycock P.W. Reservoir computing and extreme learning machines for non-linear time-series data analysis. Neural Networks 2013, 38:76-89.
    • (2013) Neural Networks , vol.38 , pp. 76-89
    • Butcher, J.B.1    Verstraeten, D.2    Schrauwen, B.3    Day, C.R.4    Haycock, P.W.5
  • 6
    • 46649115239 scopus 로고    scopus 로고
    • Diffusion recursive least-squares for distributed estimation over adaptive networks
    • Cattivelli F.S., Lopes C.G., Sayed A.H. Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing 2008, 56(5):1865-1877.
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.5 , pp. 1865-1877
    • Cattivelli, F.S.1    Lopes, C.G.2    Sayed, A.H.3
  • 7
    • 85032752418 scopus 로고    scopus 로고
    • Convex optimization for big data: scalable, randomized, and parallel algorithms for big data analytics
    • Cevher V., Becker S., Schmidt M. Convex optimization for big data: scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal Processing Magazine 2014, 31(5):32-43.
    • (2014) IEEE Signal Processing Magazine , vol.31 , Issue.5 , pp. 32-43
    • Cevher, V.1    Becker, S.2    Schmidt, M.3
  • 10
    • 84879287760 scopus 로고    scopus 로고
    • Sparse distributed learning based on diffusion adaptation
    • Di Lorenzo P., Sayed A.H. Sparse distributed learning based on diffusion adaptation. IEEE Transactions on Signal Processing 2013, 61(6):1419-1433.
    • (2013) IEEE Transactions on Signal Processing , vol.61 , Issue.6 , pp. 1419-1433
    • Di Lorenzo, P.1    Sayed, A.H.2
  • 12
    • 84885840172 scopus 로고    scopus 로고
    • Distributed machine learning in networks by consensus
    • Georgopoulos L., Hasler M. Distributed machine learning in networks by consensus. Neurocomputing 2014, 124:2-12.
    • (2014) Neurocomputing , vol.124 , pp. 2-12
    • Georgopoulos, L.1    Hasler, M.2
  • 15
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • Igelnik B., Pao Y.-H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Transactions on Neural Networks 1995, 6(6):1320-1329.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.-H.2
  • 16
    • 85013775361 scopus 로고    scopus 로고
    • Adaptive nonlinear system identification with echo state networks
    • Jaeger H. Adaptive nonlinear system identification with echo state networks. Advances in neural information processing systems 2002, 593-600.
    • (2002) Advances in neural information processing systems , pp. 593-600
    • Jaeger, H.1
  • 17
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
    • Jaeger H., Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 2004, 304(5667):78-80.
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 19
    • 58349117010 scopus 로고    scopus 로고
    • Short-term stock price prediction based on echo state networks
    • Lin X., Yang Z., Song Y. Short-term stock price prediction based on echo state networks. Expert Systems with Applications 2009, 36(3):7313-7317.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 7313-7317
    • Lin, X.1    Yang, Z.2    Song, Y.3
  • 20
    • 47549112333 scopus 로고    scopus 로고
    • Distributed parallel support vector machines in strongly connected networks
    • Lu Y., Roychowdhury V., Vandenberghe L. Distributed parallel support vector machines in strongly connected networks. IEEE Transactions on Neural Networks 2008, 19(7):1167-1178.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.7 , pp. 1167-1178
    • Lu, Y.1    Roychowdhury, V.2    Vandenberghe, L.3
  • 22
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • Lukoševičius M., Jaeger H. Reservoir computing approaches to recurrent neural network training. Computer Science Review 2009, 3(3):127-149.
    • (2009) Computer Science Review , vol.3 , Issue.3 , pp. 127-149
    • Lukoševičius, M.1    Jaeger, H.2
  • 25
    • 82355185899 scopus 로고    scopus 로고
    • A generalized LSTM-like training algorithm for second-order recurrent neural networks
    • Monner D., Reggia J.A. A generalized LSTM-like training algorithm for second-order recurrent neural networks. Neural Networks 2012, 25:70-83.
    • (2012) Neural Networks , vol.25 , pp. 70-83
    • Monner, D.1    Reggia, J.A.2
  • 27
    • 84912069513 scopus 로고    scopus 로고
    • Distributed fault detection in sensor networks using a recurrent neural network
    • Obst O. Distributed fault detection in sensor networks using a recurrent neural network. Neural Processing Letters 2014, 40(3):261-273.
    • (2014) Neural Processing Letters , vol.40 , Issue.3 , pp. 261-273
    • Obst, O.1
  • 28
    • 64149119332 scopus 로고    scopus 로고
    • Consensus and cooperation in networked multi-agent systems
    • Olfati-Saber R., Fax J.A., Murray R.M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 2007, 95(1):215-233.
    • (2007) Proceedings of the IEEE , vol.95 , Issue.1 , pp. 215-233
    • Olfati-Saber, R.1    Fax, J.A.2    Murray, R.M.3
  • 29
    • 0026868102 scopus 로고
    • Functional-link net computing: theory, system architecture, and functionalities
    • Pao Y.-H., Takefuji Y. Functional-link net computing: theory, system architecture, and functionalities. Computer 1992, 25(5):76-79.
    • (1992) Computer , vol.25 , Issue.5 , pp. 76-79
    • Pao, Y.-H.1    Takefuji, Y.2
  • 31
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Transactions on Neural Networks 1995, 6(5):1212-1228.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 35
    • 74949138263 scopus 로고    scopus 로고
    • Fast distributed average consensus algorithms based on advection-diffusion processes
    • Sardellitti S., Giona M., Barbarossa S. Fast distributed average consensus algorithms based on advection-diffusion processes. IEEE Transactions on Signal Processing 2010, 58(2):826-842.
    • (2010) IEEE Transactions on Signal Processing , vol.58 , Issue.2 , pp. 826-842
    • Sardellitti, S.1    Giona, M.2    Barbarossa, S.3
  • 37
    • 84922746025 scopus 로고    scopus 로고
    • Distributed learning with random vector functional-link networks
    • Scardapane S., Wang D., Panella M., Uncini A. Distributed learning with random vector functional-link networks. Information Sciences 2015, 301:271-284.
    • (2015) Information Sciences , vol.301 , pp. 271-284
    • Scardapane, S.1    Wang, D.2    Panella, M.3    Uncini, A.4
  • 41
    • 34249867443 scopus 로고    scopus 로고
    • Automatic speech recognition using a predictive echo state network classifier
    • Skowronski M.D., Harris J.G. Automatic speech recognition using a predictive echo state network classifier. Neural Networks 2007, 20(3):414-423.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 414-423
    • Skowronski, M.D.1    Harris, J.G.2
  • 42
    • 34249811184 scopus 로고    scopus 로고
    • Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning
    • Steil J.J. Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks 2007, 20(3):353-364.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 353-364
    • Steil, J.J.1
  • 52
    • 34249819041 scopus 로고    scopus 로고
    • Decoupled echo state networks with lateral inhibition
    • Xue Y., Yang L., Haykin S. Decoupled echo state networks with lateral inhibition. Neural Networks 2007, 20(3):365-376.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 365-376
    • Xue, Y.1    Yang, L.2    Haykin, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.