메뉴 건너뛰기




Volumn 36, Issue 3 PART 2, 2009, Pages 7313-7317

Short-term stock price prediction based on echo state networks

Author keywords

Echo state network; Neural networks; Principle component analysis; Short term price prediction

Indexed keywords

COSTS; ELECTRONIC TRADING; FINANCIAL MARKETS; FORECASTING; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS;

EID: 58349117010     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.09.049     Document Type: Article
Times cited : (194)

References (19)
  • 1
    • 12444272695 scopus 로고    scopus 로고
    • A hybrid genetic-neural architecture for stock indexes forecasting
    • Armono G., Marchesi M., and Murru A. A hybrid genetic-neural architecture for stock indexes forecasting. Information Sciences 170 (2005) 3-33
    • (2005) Information Sciences , vol.170 , pp. 3-33
    • Armono, G.1    Marchesi, M.2    Murru, A.3
  • 3
    • 12744269474 scopus 로고    scopus 로고
    • Ishii, K., van der Zant, T., Becanovic, V., Ploger, P. (2004). Optimization of parameters of echo state network and its application to underwater robot. In SICE Annual Conference in Sapporo (Vol. 3, pp. 2800-2805).
    • Ishii, K., van der Zant, T., Becanovic, V., Ploger, P. (2004). Optimization of parameters of echo state network and its application to underwater robot. In SICE Annual Conference in Sapporo (Vol. 3, pp. 2800-2805).
  • 4
    • 58349088579 scopus 로고    scopus 로고
    • Jaeger, H. (2001). The "echo state" approach to analyzing and training recurrent neural networks. GMD-German National Research Institute for Computer Science, GMD Report 148.
    • Jaeger, H. (2001). The "echo state" approach to analyzing and training recurrent neural networks. GMD-German National Research Institute for Computer Science, GMD Report 148.
  • 5
    • 58349092399 scopus 로고    scopus 로고
    • Jaeger, H. (2002). Tutorial on training recurrent neural networks covering BPPT, RTRL, EKF and the echo state network approach. Technical Report, GMD Forschungszentrum Informationstechnic GmbH.
    • Jaeger, H. (2002). Tutorial on training recurrent neural networks covering BPPT, RTRL, EKF and the echo state network approach. Technical Report, GMD Forschungszentrum Informationstechnic GmbH.
  • 6
    • 58349115494 scopus 로고    scopus 로고
    • Jaeger, H. (2002). Short term memory in echo state networks. GMD-Report 152, GMD-German National Research Institute for Computer Science.
    • Jaeger, H. (2002). Short term memory in echo state networks. GMD-Report 152, GMD-German National Research Institute for Computer Science.
  • 7
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communications
    • Jaeger H., and Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communications. Science 3 (2004)
    • (2004) Science , vol.3
    • Jaeger, H.1    Haas, H.2
  • 8
    • 34249938474 scopus 로고    scopus 로고
    • Optimization applications of echo state networks with leaky integrator neurons
    • Jaeger H., Lukosevicius M., and Popovici D. Optimization applications of echo state networks with leaky integrator neurons. Neural Networks 20 (2007) 335-352
    • (2007) Neural Networks , vol.20 , pp. 335-352
    • Jaeger, H.1    Lukosevicius, M.2    Popovici, D.3
  • 9
    • 33846816868 scopus 로고    scopus 로고
    • A hybrid approach based on neural networks genetic algorithms for detecting temporal patterns in stock markets
    • Kim H.-J., and Shin K.-S. A hybrid approach based on neural networks genetic algorithms for detecting temporal patterns in stock markets. Applied Soft Computing 7 2 (2007) 569-576
    • (2007) Applied Soft Computing , vol.7 , Issue.2 , pp. 569-576
    • Kim, H.-J.1    Shin, K.-S.2
  • 10
    • 58349107760 scopus 로고    scopus 로고
    • Lawrence, R. (1997). Using neural networks to forecast stock market prices. Manitoba, BC, Canada: University of Manitoba. http://people.ok.ubc.ca/rlawrenc/research/Papers/nn.pdf.
    • Lawrence, R. (1997). Using neural networks to forecast stock market prices. Manitoba, BC, Canada: University of Manitoba. http://people.ok.ubc.ca/rlawrenc/research/Papers/nn.pdf.
  • 13
    • 58349085187 scopus 로고    scopus 로고
    • Mok, P. Y., Lam, K. P., Ng, H. S. (2002). An ICA design of intraday stock prediction models with automatic variable selection. In IEEE International Joint Conference on Machine Learning and Cybernetics (Vol. 2, pp. 4-5).
    • Mok, P. Y., Lam, K. P., Ng, H. S. (2002). An ICA design of intraday stock prediction models with automatic variable selection. In IEEE International Joint Conference on Machine Learning and Cybernetics (Vol. 2, pp. 4-5).
  • 14
    • 0036533307 scopus 로고    scopus 로고
    • Analyzing stock market tick data using piecewise nonlinear model
    • Oh K.J., and Kim K.-J. Analyzing stock market tick data using piecewise nonlinear model. Expert Systems with Applications 22 (2002) 249-255
    • (2002) Expert Systems with Applications , vol.22 , pp. 249-255
    • Oh, K.J.1    Kim, K.-J.2
  • 15
    • 33846516926 scopus 로고    scopus 로고
    • Stock market prediction with multiple classifiers
    • Qian B., and Rasheed K. Stock market prediction with multiple classifiers. Applied Intelligence 26 1 (2007) 25-33
    • (2007) Applied Intelligence , vol.26 , Issue.1 , pp. 25-33
    • Qian, B.1    Rasheed, K.2
  • 16
    • 0032207527 scopus 로고    scopus 로고
    • Comparative study of stock trend prediction using time delay recurrent probabilistic neural networks
    • Saad E.W., Prokhorov D.V., and Wunsch D.C. Comparative study of stock trend prediction using time delay recurrent probabilistic neural networks. IEEE Transactions of Neural Networks 9 (1998) 1456-1470
    • (1998) IEEE Transactions of Neural Networks , vol.9 , pp. 1456-1470
    • Saad, E.W.1    Prokhorov, D.V.2    Wunsch, D.C.3
  • 18
    • 34249867443 scopus 로고    scopus 로고
    • Automatic speech recognition using a predictive echo state network classifier
    • Skowronski M.D., and Harris J.G. Automatic speech recognition using a predictive echo state network classifier. Neural Networks 20 (2007) 414-423
    • (2007) Neural Networks , vol.20 , pp. 414-423
    • Skowronski, M.D.1    Harris, J.G.2
  • 19
    • 0036925049 scopus 로고    scopus 로고
    • Zhu, J.-Y., Ren, B., Zhang, H.-X., & Deng, Z.-T. (2002). Time series prediction via new support vector machines. In Proceedings of the First International Conference on Machine Learning and Cybernetics (pp. 4-5).
    • Zhu, J.-Y., Ren, B., Zhang, H.-X., & Deng, Z.-T. (2002). Time series prediction via new support vector machines. In Proceedings of the First International Conference on Machine Learning and Cybernetics (pp. 4-5).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.