-
1
-
-
12444272695
-
A hybrid genetic-neural architecture for stock indexes forecasting
-
Armono G., Marchesi M., and Murru A. A hybrid genetic-neural architecture for stock indexes forecasting. Information Sciences 170 (2005) 3-33
-
(2005)
Information Sciences
, vol.170
, pp. 3-33
-
-
Armono, G.1
Marchesi, M.2
Murru, A.3
-
3
-
-
12744269474
-
-
Ishii, K., van der Zant, T., Becanovic, V., Ploger, P. (2004). Optimization of parameters of echo state network and its application to underwater robot. In SICE Annual Conference in Sapporo (Vol. 3, pp. 2800-2805).
-
Ishii, K., van der Zant, T., Becanovic, V., Ploger, P. (2004). Optimization of parameters of echo state network and its application to underwater robot. In SICE Annual Conference in Sapporo (Vol. 3, pp. 2800-2805).
-
-
-
-
4
-
-
58349088579
-
-
Jaeger, H. (2001). The "echo state" approach to analyzing and training recurrent neural networks. GMD-German National Research Institute for Computer Science, GMD Report 148.
-
Jaeger, H. (2001). The "echo state" approach to analyzing and training recurrent neural networks. GMD-German National Research Institute for Computer Science, GMD Report 148.
-
-
-
-
5
-
-
58349092399
-
-
Jaeger, H. (2002). Tutorial on training recurrent neural networks covering BPPT, RTRL, EKF and the echo state network approach. Technical Report, GMD Forschungszentrum Informationstechnic GmbH.
-
Jaeger, H. (2002). Tutorial on training recurrent neural networks covering BPPT, RTRL, EKF and the echo state network approach. Technical Report, GMD Forschungszentrum Informationstechnic GmbH.
-
-
-
-
6
-
-
58349115494
-
-
Jaeger, H. (2002). Short term memory in echo state networks. GMD-Report 152, GMD-German National Research Institute for Computer Science.
-
Jaeger, H. (2002). Short term memory in echo state networks. GMD-Report 152, GMD-German National Research Institute for Computer Science.
-
-
-
-
7
-
-
1842421269
-
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communications
-
Jaeger H., and Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communications. Science 3 (2004)
-
(2004)
Science
, vol.3
-
-
Jaeger, H.1
Haas, H.2
-
8
-
-
34249938474
-
Optimization applications of echo state networks with leaky integrator neurons
-
Jaeger H., Lukosevicius M., and Popovici D. Optimization applications of echo state networks with leaky integrator neurons. Neural Networks 20 (2007) 335-352
-
(2007)
Neural Networks
, vol.20
, pp. 335-352
-
-
Jaeger, H.1
Lukosevicius, M.2
Popovici, D.3
-
9
-
-
33846816868
-
A hybrid approach based on neural networks genetic algorithms for detecting temporal patterns in stock markets
-
Kim H.-J., and Shin K.-S. A hybrid approach based on neural networks genetic algorithms for detecting temporal patterns in stock markets. Applied Soft Computing 7 2 (2007) 569-576
-
(2007)
Applied Soft Computing
, vol.7
, Issue.2
, pp. 569-576
-
-
Kim, H.-J.1
Shin, K.-S.2
-
10
-
-
58349107760
-
-
Lawrence, R. (1997). Using neural networks to forecast stock market prices. Manitoba, BC, Canada: University of Manitoba. http://people.ok.ubc.ca/rlawrenc/research/Papers/nn.pdf.
-
Lawrence, R. (1997). Using neural networks to forecast stock market prices. Manitoba, BC, Canada: University of Manitoba. http://people.ok.ubc.ca/rlawrenc/research/Papers/nn.pdf.
-
-
-
-
13
-
-
58349085187
-
-
Mok, P. Y., Lam, K. P., Ng, H. S. (2002). An ICA design of intraday stock prediction models with automatic variable selection. In IEEE International Joint Conference on Machine Learning and Cybernetics (Vol. 2, pp. 4-5).
-
Mok, P. Y., Lam, K. P., Ng, H. S. (2002). An ICA design of intraday stock prediction models with automatic variable selection. In IEEE International Joint Conference on Machine Learning and Cybernetics (Vol. 2, pp. 4-5).
-
-
-
-
14
-
-
0036533307
-
Analyzing stock market tick data using piecewise nonlinear model
-
Oh K.J., and Kim K.-J. Analyzing stock market tick data using piecewise nonlinear model. Expert Systems with Applications 22 (2002) 249-255
-
(2002)
Expert Systems with Applications
, vol.22
, pp. 249-255
-
-
Oh, K.J.1
Kim, K.-J.2
-
15
-
-
33846516926
-
Stock market prediction with multiple classifiers
-
Qian B., and Rasheed K. Stock market prediction with multiple classifiers. Applied Intelligence 26 1 (2007) 25-33
-
(2007)
Applied Intelligence
, vol.26
, Issue.1
, pp. 25-33
-
-
Qian, B.1
Rasheed, K.2
-
16
-
-
0032207527
-
Comparative study of stock trend prediction using time delay recurrent probabilistic neural networks
-
Saad E.W., Prokhorov D.V., and Wunsch D.C. Comparative study of stock trend prediction using time delay recurrent probabilistic neural networks. IEEE Transactions of Neural Networks 9 (1998) 1456-1470
-
(1998)
IEEE Transactions of Neural Networks
, vol.9
, pp. 1456-1470
-
-
Saad, E.W.1
Prokhorov, D.V.2
Wunsch, D.C.3
-
18
-
-
34249867443
-
Automatic speech recognition using a predictive echo state network classifier
-
Skowronski M.D., and Harris J.G. Automatic speech recognition using a predictive echo state network classifier. Neural Networks 20 (2007) 414-423
-
(2007)
Neural Networks
, vol.20
, pp. 414-423
-
-
Skowronski, M.D.1
Harris, J.G.2
-
19
-
-
0036925049
-
-
Zhu, J.-Y., Ren, B., Zhang, H.-X., & Deng, Z.-T. (2002). Time series prediction via new support vector machines. In Proceedings of the First International Conference on Machine Learning and Cybernetics (pp. 4-5).
-
Zhu, J.-Y., Ren, B., Zhang, H.-X., & Deng, Z.-T. (2002). Time series prediction via new support vector machines. In Proceedings of the First International Conference on Machine Learning and Cybernetics (pp. 4-5).
-
-
-
|