-
1
-
-
0025547193
-
Links between Markov models and multilayer perceptrons
-
Dec
-
H. Bourlard and C. J. Wellekens, "Links between Markov models and multilayer perceptrons," IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 12, pp. 1167-1178, Dec. 1990.
-
(1990)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.12
, Issue.12
, pp. 1167-1178
-
-
Bourlard, H.1
Wellekens, C.J.2
-
2
-
-
0025659256
-
Continuous speech recognition using multilayer perceptrons with hiddenMarkov models
-
N. Morgan and H. Bourlard, "Continuous speech recognition using multilayer perceptrons with hiddenMarkov models," in Proc. ICASSP, 1990, pp. 413-416.
-
(1990)
Proc. ICASSP
, pp. 413-416
-
-
Morgan, N.1
Bourlard, H.2
-
3
-
-
0003573244
-
-
NewYork,NY, USA: Springer
-
H. Bourlard and N. Morgan, Connectionist speech recognition: a hybrid approach, ser. TheKluwer International Series in Engineering and Computer Science. NewYork,NY, USA: Springer, 1994, vol. 247.
-
(1994)
Connectionist Speech Recognition: A Hybrid Approach, Ser. TheKluwer International Series in Engineering and Computer Science
, vol.247
-
-
Bourlard, H.1
Morgan, N.2
-
4
-
-
0028392167
-
An application of recurrent neural nets to phone probability estimation
-
Mar
-
A. Robinson, "An application of recurrent neural nets to phone probability estimation," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 298-305, Mar. 1994.
-
(1994)
IEEE Trans. Neural Netw
, vol.5
, Issue.2
, pp. 298-305
-
-
Robinson, A.1
-
5
-
-
0029308753
-
Neural networks for statistical recognition of continuous speech
-
May
-
N. Morgan and H. Bourlard, "Neural networks for statistical recognition of continuous speech," Proc. IEEE, vol. 83, no. 5, pp. 742-772, May 1995.
-
(1995)
Proc IEEE
, vol.83
, Issue.5
, pp. 742-772
-
-
Morgan, N.1
Bourlard, H.2
-
6
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
DOI 10.1162/neco.2006.18.7.1527
-
G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006. (Pubitemid 44024729)
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
7
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks," in Proc. NIPS, , 2007, pp. 153-160.
-
(2007)
Proc. NIPS
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
8
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov. 2012
-
G. Hinton, L. Deng, D. Yu, G. Dahl, A.Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
IEEE Signal Process. Mag
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kingsbury, B.11
-
9
-
-
84858972572
-
Making deep belief networks effective for large vocabulary continuous speech recognition
-
T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novák, and A. r. Mohamed, "Making deep belief networks effective for large vocabulary continuous speech recognition," in Proc. ASRU, 2011, pp. 30-35.
-
Proc. ASRU
, vol.2011
, pp. 30-35
-
-
Sainath, T.N.1
Kingsbury, B.2
Ramabhadran, B.3
Fousek, P.4
Novák, A.5
Mohamed, P.6
-
10
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
Jan
-
A. Mohamed, G. Dahl, and G. Hinton, "Acoustic modeling using deep belief networks," IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 14-22, Jan. 2012.
-
(2012)
IEEE Trans. Audio, Speech, Lang. Process
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.1
Dahl, G.2
Hinton, G.3
-
11
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
-
Jan
-
G. Dahl,D.Yu, L.Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition," IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30-42, Jan. 2012.
-
(2012)
IEEE Trans. Audio, Speech, Lang. Process
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.1
Yu, D.2
Deng, L.3
Acero, A.4
-
12
-
-
84867614591
-
Scalable stacking and learning for building deep architectures
-
L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures," in Proc. ICASSP, 2012, pp. 2133-2136.
-
Proc. ICASSP
, vol.2012
, pp. 2133-2136
-
-
Deng, L.1
Yu, D.2
Platt, J.3
-
13
-
-
84867606917
-
A deep architecture with bilinear modeling of hidden representations: Applications to phonetic recognition
-
B. Hutchinson, L. Deng, and D. Yu, "A deep architecture with bilinear modeling of hidden representations: applications to phonetic recognition," in Proc. ICASSP, 2012, pp. 4805-4808.
-
Proc. ICASSP
, vol.2012
, pp. 4805-4808
-
-
Hutchinson, B.1
Deng, L.2
Yu, D.3
-
14
-
-
84878539964
-
Application of pretrained deep neural networks to large vocabulary speech recognition
-
N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, "Application of pretrained deep neural networks to large vocabulary speech recognition," in Proc. Interspeech, 2012.
-
Proc. Interspeech
, vol.2012
-
-
Jaitly, N.1
Nguyen, P.2
Senior, A.3
Vanhoucke, V.4
-
15
-
-
33947620115
-
Hierarchical structures of neural networks for phoneme recognition
-
P. Schwarz, P. Matejka, and J. Cernocky, "Hierarchical structures of neural networks for phoneme recognition," in Proc. ICASSP, 2006, pp. 325-328.
-
(2006)
Proc. ICASSP
, pp. 325-328
-
-
Schwarz, P.1
Matejka, P.2
Cernocky, J.3
-
16
-
-
80051620271
-
A hierarchical, context-dependent neural network architecture for improved phone recognition
-
L. Toth, "A hierarchical, context-dependent neural network architecture for improved phone recognition," in Proc. ICASSP, 2011, pp. 5040-5043.
-
Proc. ICASSP
, vol.2011
, pp. 5040-5043
-
-
Toth, L.1
-
17
-
-
78049251448
-
Analysis of MLP-based hierarchical phoneme posterior probability estimator
-
Feb
-
J. Pinto, G. S. V. S. Sivaram, M. Magimai-Doss, H. Hermansky, and H. Bourlard, "Analysis of MLP-based hierarchical phoneme posterior probability estimator," IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 2, pp. 225-241, Feb. 2011.
-
(2011)
IEEE Trans. Audio, Speech, Lang. Process
, vol.19
, Issue.2
, pp. 225-241
-
-
Pinto, J.1
Sivaram, G.S.V.S.2
Magimai-Doss, M.3
Hermansky, H.4
Bourlard, H.5
-
18
-
-
84055212007
-
Sparse multilayer perceptron for phoneme recognition
-
Jan. 2012
-
G. Sivaram and H. Hermansky, "Sparse multilayer perceptron for phoneme recognition," IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 23-29, Jan. 2012.
-
IEEE Trans. Audio, Speech, Lang. Process
, vol.20
, Issue.1
, pp. 23-29
-
-
Sivaram, G.1
Hermansky, H.2
-
19
-
-
0022471098
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, no. 6088, pp. 533-536, Oct. 1986. (Pubitemid 16025374)
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
20
-
-
33749833931
-
Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the echo state network approach
-
H. Jaeger, "Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the echo state network approach," GMD Rep. 159, German Nat. Res. Center for Inform. Technol. Tech. Rep., 2002.
-
(2002)
GMD Rep 159, German Nat. Res. Center for Inform. Technol. Tech. Rep
-
-
Jaeger, H.1
-
21
-
-
34249815487
-
An experimental unification of reservoir computing methods
-
DOI 10.1016/j.neunet.2007.04.003, PII S089360800700038X, Echo State Networks and Liquid State Machines
-
D.Verstraeten, B. Schrauwen, M. D'Haene, andD. Stroobandt, "An experimental unification of reservoir computing methods," Neural Netw., vol. 20, no. 3, pp. 391-403, Apr. 2007. (Pubitemid 46856109)
-
(2007)
Neural Networks
, vol.20
, Issue.3
, pp. 391-403
-
-
Verstraeten, D.1
Schrauwen, B.2
D'Haene, M.3
Stroobandt, D.4
-
22
-
-
68649088777
-
Reservoir computing approaches to recurrent neural network training
-
Aug
-
M. Lukosevi?ius and H. Jaeger, "Reservoir computing approaches to recurrent neural network training," Comput. Sci. Rev., vol. 3, no. 3, pp. 127-149, Aug. 2009.
-
(2009)
Comput. Sci. Rev
, vol.3
, Issue.3
, pp. 127-149
-
-
Lukoseviius, M.1
Jaeger, H.2
-
23
-
-
85087935180
-
Reservoir computing trends
-
Nov
-
M. Lukosevi?ius, H. Jaeger, and B. Schrauwen, "Reservoir computing trends," KI-Künstliche Intell., vol. 26, no. 4, pp. 365-371, Nov. 2012.
-
(2012)
KI-Künstliche Intell
, vol.26
, Issue.4
, pp. 365-371
-
-
Lukoseviius, M.1
Jaeger, H.2
Schrauwen, B.3
-
24
-
-
73949157176
-
Echo state networks with filter neurons and a delay & sum readout
-
Mar
-
G. Holzmann and H. Hauser, "Echo state networks with filter neurons and a delay & sum readout," Neural Netw., vol. 23, no. 2, pp. 244-256, Mar. 2010.
-
(2010)
Neural Netw
, vol.23
, Issue.2
, pp. 244-256
-
-
Holzmann, G.1
Hauser, H.2
-
25
-
-
34249867443
-
Automatic speech recognition using a predictive echo state network classifier
-
DOI 10.1016/j.neunet.2007.04.006, PII S0893608007000330, Echo State Networks and Liquid State Machines
-
M. Skowronski and J. Harris, "Automatic speech recognition using a predictive echo state network classifier," Neural Netw., vol. 20, no. 3, pp. 414-423, Apr. 2007. (Pubitemid 46863403)
-
(2007)
Neural Networks
, vol.20
, Issue.3
, pp. 414-423
-
-
Skowronski, M.D.1
Harris, J.G.2
-
26
-
-
84857152927
-
Connected digit recognition by means of reservoir computing
-
A. Jalalvand, F. Triefenbach, D. Verstraeten, and J.-P. Martens, "Connected digit recognition by means of reservoir computing," in Proc. Interspeech, 2011, pp. 1725-1728.
-
(2011)
Proc. Interspeech
, pp. 1725-1728
-
-
Jalalvand, A.1
Triefenbach, F.2
Verstraeten, D.3
Martens, J.-P.4
-
27
-
-
84878591993
-
Continuous digit recognition in noise: Reservoirs can do an excellent job
-
Paper ID 644
-
A. Jalalvand, F. Triefenbach, and J.-P. Martens, "Continuous digit recognition in noise: Reservoirs can do an excellent job," in Proc. Interspeech, 2012, paper ID 644.
-
(2012)
Proc. Interspeech
-
-
Jalalvand, A.1
Triefenbach, F.2
Martens, J.-P.3
-
28
-
-
0024610919
-
A tutorial on hiddenMarkov models and selected applications in speech recognition
-
Feb
-
L. Rabiner, "A tutorial on hiddenMarkov models and selected applications in speech recognition," Proc. IEEE, vol. 77, no. 2, pp. 257-286, Feb. 1989.
-
(1989)
Proc IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.1
-
29
-
-
77950917809
-
Discriminative training of hmms for automatic speech recognition: A survey
-
Oct
-
H. Jiang, "Discriminative training of hmms for automatic speech recognition: A survey," Comput. Speech Lang., vol. 24, no. 4, pp. 589-608, Oct. 2010.
-
(2010)
Comput. Speech Lang
, vol.24
, Issue.4
, pp. 589-608
-
-
Jiang, H.1
-
31
-
-
0001595997
-
Neural network classifiers estimate posterior probabilities
-
M. Richard and R. Lippmann, "Neural network classifiers estimate posterior probabilities," Neural Comput., vol. 3, no. 4, pp. 461-483, 1991.
-
(1991)
Neural Comput
, vol.3
, Issue.4
, pp. 461-483
-
-
Richard, M.1
Lippmann, R.2
-
32
-
-
0032658253
-
Temporal patterns (TRAPS) in ASR of noisy speech
-
H. Hermansky and S. Sharma, "Temporal patterns (TRAPS) in ASR of noisy speech," in Proc. ICASSP, 1999, pp. 289-292.
-
(1999)
Proc. ICASSP
, pp. 289-292
-
-
Hermansky, H.1
Sharma, S.2
-
33
-
-
84878403164
-
Context-dependent MLPs for LVCSR: TANDEM, hybrid or both?
-
Paper ID 734
-
Z. Tüske, M. Sundermeyer, R. Schlüter, and H. Ney, "Context-dependent MLPs for LVCSR: TANDEM, hybrid or both?," in Proc. Interspeech, 2012, Paper ID 734.
-
(2012)
Proc. Interspeech
-
-
Tüske, Z.1
Sundermeyer, M.2
Schlüter, R.3
Ney, H.4
-
34
-
-
0000329355
-
A recurrent error propagation network speech recognition system
-
Jul
-
T. Robinson and F. Fallside, "A recurrent error propagation network speech recognition system," Comput. Speech Lang., vol. 5, no. 3, pp. 259-274, Jul. 1991.
-
(1991)
Comput. Speech Lang
, vol.5
, Issue.3
, pp. 259-274
-
-
Robinson, T.1
Fallside, F.2
-
35
-
-
0031268931
-
Bidirectional recurrent neural networks
-
PII S1053587X97080550
-
M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, Nov. 1997. (Pubitemid 127766336)
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, Issue.11
, pp. 2673-2681
-
-
Schuster, M.1
Paliwal, K.K.2
-
36
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
Oct
-
P. Werbos, "Backpropagation through time: what it does and how to do it," Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.
-
(1990)
Proc IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.1
-
37
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, no. 2, pp. 270-280, 1989.
-
(1989)
Neural Comput
, vol.1
, Issue.2
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
38
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Mar
-
Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
-
(1994)
IEEE Trans. Neural Netw
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
39
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997. (Pubitemid 127462305)
-
(1997)
Neural Computation
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
40
-
-
70349284484
-
-
Ph.D., Technische Univ. München, Munich, Germany
-
A. Graves, "Supervised sequence labelling with recurrent neural networks, dissertation," Ph.D., Technische Univ. München, Munich, Germany, 2008.
-
(2008)
Supervised Sequence Labelling with Recurrent Neural Networks Dissertation
-
-
Graves, A.1
-
42
-
-
51849149899
-
Stabilizing and improving the learning speed of 2-layered LSTM network
-
D. Correa, A. Levada, and J. Saito, "Stabilizing and improving the learning speed of 2-layered LSTM network," in Proc. CSE, , 2008, pp. 293-300.
-
(2008)
Proc. CSE
, pp. 293-300
-
-
Correa, D.1
Levada, A.2
Saito, J.3
-
43
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Aug
-
G. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Comput., vol. 14, no. 8, pp. 1771-1800, Aug. 2002.
-
(2002)
Neural Comput
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.1
-
44
-
-
84865768819
-
Deep convex net: A scalable architecture for speech pattern classification
-
L. Deng and D. Yu, "Deep convex net: A scalable architecture for speech pattern classification," in Proc. Interspeech, 2011, pp. 2285-2288.
-
(2011)
Proc. Interspeech
, pp. 2285-2288
-
-
Deng, L.1
Yu, D.2
-
46
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
Nov
-
W. Maass, T. Natschlager, and H. Markram, "Real-time computing without stable states: A new framework for neural computation based on perturbations," Neural Comput., vol. 14, no. 11, pp. 2531-2560, Nov. 2002.
-
(2002)
Neural Comput
, vol.14
, Issue.11
, pp. 2531-2560
-
-
Maass, W.1
Natschlager, T.2
Markram, H.3
-
47
-
-
34249938474
-
Optimization and applications of echo state networks with leaky- integrator neurons
-
DOI 10.1016/j.neunet.2007.04.016, PII S089360800700041X, Echo State Networks and Liquid State Machines
-
H. Jaeger, M. Lukosevi?ius, D. Popovici, and U. Siewert, "Optimization and applications of echo state networks with leaky-integrator neurons," Neural Netw., vol. 20, no. 3, pp. 335-352, Apr. 2007. (Pubitemid 46876638)
-
(2007)
Neural Networks
, vol.20
, Issue.3
, pp. 335-352
-
-
Jaeger, H.1
Lukosevicius, M.2
Popovici, D.3
Siewert, U.4
-
48
-
-
34249753618
-
Support-vector networks
-
Sep
-
C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, Sep. 1995.
-
(1995)
Mach. Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
49
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
Jan
-
C. M. Bishop, "Training with noise is equivalent to Tikhonov regularization," Neural Comput., vol. 7, no. 1, pp. 108-116, Jan. 1994.
-
(1994)
Neural Comput
, vol.7
, Issue.1
, pp. 108-116
-
-
Bishop, C.M.1
-
50
-
-
84952505343
-
Ridge regression in practice
-
Feb
-
D. W. Marquardt and R. D. Snee, "Ridge regression in practice," Amer. Statist., vol. 29, no. 1, pp. 3-20, Feb. 1975.
-
(1975)
Amer. Statist
, vol.29
, Issue.1
, pp. 3-20
-
-
Marquardt, D.W.1
Snee, R.D.2
-
51
-
-
84947145047
-
A generalized inverse for matrices
-
Jul
-
R. Penrose, "A generalized inverse for matrices," Proc. Cambridge Philosoph. Soc., vol. 51, pp. 406-413, Jul. 1955.
-
(1955)
Proc. Cambridge Philosoph. Soc
, vol.51
, pp. 406-413
-
-
Penrose, R.1
-
52
-
-
0003548585
-
The darpa timit acoustic-phonetic continuous speech corpus cd-rom nist
-
J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, and N. Dahlgren, The DARPA TIMIT acoustic-phonetic continuous speech corpus CD-ROM NIST, Tech. Rep., 1993.
-
(1993)
Tech. Rep
-
-
Garofolo, J.1
Lamel, L.2
Fisher, W.3
Fiscus, J.4
Pallett, D.5
Dahlgren, N.6
-
53
-
-
0024768209
-
Speaker-independent phone recognition using hidden Markov models
-
Nov
-
K. F. Lee and H.-W. Hon, "Speaker-independent phone recognition using hidden Markov models," IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 11, pp. 1641-1648, Nov. 1989.
-
(1989)
IEEE Trans. Acoust., Speech, Signal Process
, vol.37
, Issue.11
, pp. 1641-1648
-
-
Lee, K.F.1
Hon, H.-W.2
-
54
-
-
0019053271
-
Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
-
S. Davis and P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28, no. 4, pp. 357-366, Aug. 1980. (Pubitemid 11464930)
-
(1980)
IEEE Transactions on Acoustics, Speech, and Signal Processing
, vol.ASSP-28
, Issue.4
, pp. 357-366
-
-
Davis Steven, B.1
Mermelstein Paul2
-
55
-
-
85161977591
-
Phoneme recognition with large hierarchical reservoirs
-
F. Triefenbach, A. Jalalvand, B. Schrauwen, and J.-P. Martens, "Phoneme recognition with large hierarchical reservoirs," in Proc. NIPS, 2010, pp. 2307-2315.
-
(2010)
Proc. NIPS
, pp. 2307-2315
-
-
Triefenbach, F.1
Jalalvand, A.2
Schrauwen, B.3
Martens, J.-P.4
-
56
-
-
84857152342
-
Can non-linear readout nodes enhance the performance of reservoir-based speech recognizers?
-
F. Triefenbach and J.-P. Martens, "Can non-linear readout nodes enhance the performance of reservoir-based speech recognizers?," in Proc. ICI, 2011, pp. 262-267.
-
(2011)
Proc
, pp. 262-267
-
-
Triefenbach, F.1
Martens, J.-P.2
-
57
-
-
0031624622
-
Improved phone recognition using bayesian triphone models
-
J. Ming and F. Smith, "Improved phone recognition using bayesian triphone models," in Proc. ICASSP, 1998, pp. 409-412.
-
(1998)
Proc. ICASSP
, pp. 409-412
-
-
Ming, J.1
Smith, F.2
-
58
-
-
34547551709
-
Use of differential cepstra as acoustic features in hidden trajectorymodeling for phonetic recognition
-
L. Deng and D. Yu, "Use of differential cepstra as acoustic features in hidden trajectorymodeling for phonetic recognition," in Proc. ICASSP, 2007, pp. 445-448.
-
(2007)
Proc. ICASSP
, pp. 445-448
-
-
Deng, L.1
Yu, D.2
-
59
-
-
84874271357
-
Improving large vocabulary continuous speech recognition by combining GMM-based and reservoir-based acoustic modeling
-
F. Triefenbach, K. Demuynck, and J.-P. Martens, "Improving large vocabulary continuous speech recognition by combining GMM-based and reservoir-based acoustic modeling," in Proc. SLT, 2012, pp. 107-112.
-
Proc. SLT
, vol.2012
, pp. 107-112
-
-
Triefenbach, F.1
Demuynck, K.2
Martens, J.-P.3
-
60
-
-
40649085253
-
Improving reservoirs using intrinsic plasticity
-
Mar
-
B. Schrauwen, M. Wardermann, D. Verstraeten, J. J. Steil, and D. Stroobandt, "Improving reservoirs using intrinsic plasticity," Neurocomputing, vol. 71, no. 7, pp. 1159-1171, Mar. 2008
-
(2008)
Neurocomputing
, vol.71
, Issue.7
, pp. 1159-1171
-
-
Schrauwen, B.1
Wardermann, M.2
Verstraeten, D.3
Steil, J.J.4
Stroobandt, D.5
|