메뉴 건너뛰기




Volumn 21, Issue 11, 2013, Pages 2439-2450

Acoustic modeling with hierarchical reservoirs

Author keywords

Acoustic modeling; automatic speech recognition; recurrent neural networks; reservoir computing

Indexed keywords

ACOUSTIC MODEL; AUTOMATIC SPEECH RECOGNITION; GAUSSIAN MIXTURE MODEL (GMMS); HIDDEN MARKOV MODELS (HMMS); RECURRENT NEURAL NETWORK (RNN); RESERVOIR ARCHITECTURE; RESERVOIR COMPUTING; TRAINING PROCEDURES;

EID: 84886714036     PISSN: 15587916     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASL.2013.2280209     Document Type: Article
Times cited : (66)

References (60)
  • 1
    • 0025547193 scopus 로고
    • Links between Markov models and multilayer perceptrons
    • Dec
    • H. Bourlard and C. J. Wellekens, "Links between Markov models and multilayer perceptrons," IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 12, pp. 1167-1178, Dec. 1990.
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell , vol.12 , Issue.12 , pp. 1167-1178
    • Bourlard, H.1    Wellekens, C.J.2
  • 2
    • 0025659256 scopus 로고
    • Continuous speech recognition using multilayer perceptrons with hiddenMarkov models
    • N. Morgan and H. Bourlard, "Continuous speech recognition using multilayer perceptrons with hiddenMarkov models," in Proc. ICASSP, 1990, pp. 413-416.
    • (1990) Proc. ICASSP , pp. 413-416
    • Morgan, N.1    Bourlard, H.2
  • 4
    • 0028392167 scopus 로고
    • An application of recurrent neural nets to phone probability estimation
    • Mar
    • A. Robinson, "An application of recurrent neural nets to phone probability estimation," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 298-305, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 298-305
    • Robinson, A.1
  • 5
    • 0029308753 scopus 로고
    • Neural networks for statistical recognition of continuous speech
    • May
    • N. Morgan and H. Bourlard, "Neural networks for statistical recognition of continuous speech," Proc. IEEE, vol. 83, no. 5, pp. 742-772, May 1995.
    • (1995) Proc IEEE , vol.83 , Issue.5 , pp. 742-772
    • Morgan, N.1    Bourlard, H.2
  • 6
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 9
    • 84858972572 scopus 로고    scopus 로고
    • Making deep belief networks effective for large vocabulary continuous speech recognition
    • T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novák, and A. r. Mohamed, "Making deep belief networks effective for large vocabulary continuous speech recognition," in Proc. ASRU, 2011, pp. 30-35.
    • Proc. ASRU , vol.2011 , pp. 30-35
    • Sainath, T.N.1    Kingsbury, B.2    Ramabhadran, B.3    Fousek, P.4    Novák, A.5    Mohamed, P.6
  • 11
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • Jan
    • G. Dahl,D.Yu, L.Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition," IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30-42, Jan. 2012.
    • (2012) IEEE Trans. Audio, Speech, Lang. Process , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 12
    • 84867614591 scopus 로고    scopus 로고
    • Scalable stacking and learning for building deep architectures
    • L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures," in Proc. ICASSP, 2012, pp. 2133-2136.
    • Proc. ICASSP , vol.2012 , pp. 2133-2136
    • Deng, L.1    Yu, D.2    Platt, J.3
  • 13
    • 84867606917 scopus 로고    scopus 로고
    • A deep architecture with bilinear modeling of hidden representations: Applications to phonetic recognition
    • B. Hutchinson, L. Deng, and D. Yu, "A deep architecture with bilinear modeling of hidden representations: applications to phonetic recognition," in Proc. ICASSP, 2012, pp. 4805-4808.
    • Proc. ICASSP , vol.2012 , pp. 4805-4808
    • Hutchinson, B.1    Deng, L.2    Yu, D.3
  • 14
    • 84878539964 scopus 로고    scopus 로고
    • Application of pretrained deep neural networks to large vocabulary speech recognition
    • N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, "Application of pretrained deep neural networks to large vocabulary speech recognition," in Proc. Interspeech, 2012.
    • Proc. Interspeech , vol.2012
    • Jaitly, N.1    Nguyen, P.2    Senior, A.3    Vanhoucke, V.4
  • 15
    • 33947620115 scopus 로고    scopus 로고
    • Hierarchical structures of neural networks for phoneme recognition
    • P. Schwarz, P. Matejka, and J. Cernocky, "Hierarchical structures of neural networks for phoneme recognition," in Proc. ICASSP, 2006, pp. 325-328.
    • (2006) Proc. ICASSP , pp. 325-328
    • Schwarz, P.1    Matejka, P.2    Cernocky, J.3
  • 16
    • 80051620271 scopus 로고    scopus 로고
    • A hierarchical, context-dependent neural network architecture for improved phone recognition
    • L. Toth, "A hierarchical, context-dependent neural network architecture for improved phone recognition," in Proc. ICASSP, 2011, pp. 5040-5043.
    • Proc. ICASSP , vol.2011 , pp. 5040-5043
    • Toth, L.1
  • 18
    • 84055212007 scopus 로고    scopus 로고
    • Sparse multilayer perceptron for phoneme recognition
    • Jan. 2012
    • G. Sivaram and H. Hermansky, "Sparse multilayer perceptron for phoneme recognition," IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 23-29, Jan. 2012.
    • IEEE Trans. Audio, Speech, Lang. Process , vol.20 , Issue.1 , pp. 23-29
    • Sivaram, G.1    Hermansky, H.2
  • 19
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, no. 6088, pp. 533-536, Oct. 1986. (Pubitemid 16025374)
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 20
    • 33749833931 scopus 로고    scopus 로고
    • Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the echo state network approach
    • H. Jaeger, "Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the echo state network approach," GMD Rep. 159, German Nat. Res. Center for Inform. Technol. Tech. Rep., 2002.
    • (2002) GMD Rep 159, German Nat. Res. Center for Inform. Technol. Tech. Rep
    • Jaeger, H.1
  • 21
    • 34249815487 scopus 로고    scopus 로고
    • An experimental unification of reservoir computing methods
    • DOI 10.1016/j.neunet.2007.04.003, PII S089360800700038X, Echo State Networks and Liquid State Machines
    • D.Verstraeten, B. Schrauwen, M. D'Haene, andD. Stroobandt, "An experimental unification of reservoir computing methods," Neural Netw., vol. 20, no. 3, pp. 391-403, Apr. 2007. (Pubitemid 46856109)
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 391-403
    • Verstraeten, D.1    Schrauwen, B.2    D'Haene, M.3    Stroobandt, D.4
  • 22
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • Aug
    • M. Lukosevi?ius and H. Jaeger, "Reservoir computing approaches to recurrent neural network training," Comput. Sci. Rev., vol. 3, no. 3, pp. 127-149, Aug. 2009.
    • (2009) Comput. Sci. Rev , vol.3 , Issue.3 , pp. 127-149
    • Lukoseviius, M.1    Jaeger, H.2
  • 24
    • 73949157176 scopus 로고    scopus 로고
    • Echo state networks with filter neurons and a delay & sum readout
    • Mar
    • G. Holzmann and H. Hauser, "Echo state networks with filter neurons and a delay & sum readout," Neural Netw., vol. 23, no. 2, pp. 244-256, Mar. 2010.
    • (2010) Neural Netw , vol.23 , Issue.2 , pp. 244-256
    • Holzmann, G.1    Hauser, H.2
  • 25
    • 34249867443 scopus 로고    scopus 로고
    • Automatic speech recognition using a predictive echo state network classifier
    • DOI 10.1016/j.neunet.2007.04.006, PII S0893608007000330, Echo State Networks and Liquid State Machines
    • M. Skowronski and J. Harris, "Automatic speech recognition using a predictive echo state network classifier," Neural Netw., vol. 20, no. 3, pp. 414-423, Apr. 2007. (Pubitemid 46863403)
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 414-423
    • Skowronski, M.D.1    Harris, J.G.2
  • 27
    • 84878591993 scopus 로고    scopus 로고
    • Continuous digit recognition in noise: Reservoirs can do an excellent job
    • Paper ID 644
    • A. Jalalvand, F. Triefenbach, and J.-P. Martens, "Continuous digit recognition in noise: Reservoirs can do an excellent job," in Proc. Interspeech, 2012, paper ID 644.
    • (2012) Proc. Interspeech
    • Jalalvand, A.1    Triefenbach, F.2    Martens, J.-P.3
  • 28
    • 0024610919 scopus 로고
    • A tutorial on hiddenMarkov models and selected applications in speech recognition
    • Feb
    • L. Rabiner, "A tutorial on hiddenMarkov models and selected applications in speech recognition," Proc. IEEE, vol. 77, no. 2, pp. 257-286, Feb. 1989.
    • (1989) Proc IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 29
    • 77950917809 scopus 로고    scopus 로고
    • Discriminative training of hmms for automatic speech recognition: A survey
    • Oct
    • H. Jiang, "Discriminative training of hmms for automatic speech recognition: A survey," Comput. Speech Lang., vol. 24, no. 4, pp. 589-608, Oct. 2010.
    • (2010) Comput. Speech Lang , vol.24 , Issue.4 , pp. 589-608
    • Jiang, H.1
  • 31
    • 0001595997 scopus 로고
    • Neural network classifiers estimate posterior probabilities
    • M. Richard and R. Lippmann, "Neural network classifiers estimate posterior probabilities," Neural Comput., vol. 3, no. 4, pp. 461-483, 1991.
    • (1991) Neural Comput , vol.3 , Issue.4 , pp. 461-483
    • Richard, M.1    Lippmann, R.2
  • 32
    • 0032658253 scopus 로고    scopus 로고
    • Temporal patterns (TRAPS) in ASR of noisy speech
    • H. Hermansky and S. Sharma, "Temporal patterns (TRAPS) in ASR of noisy speech," in Proc. ICASSP, 1999, pp. 289-292.
    • (1999) Proc. ICASSP , pp. 289-292
    • Hermansky, H.1    Sharma, S.2
  • 33
  • 34
    • 0000329355 scopus 로고
    • A recurrent error propagation network speech recognition system
    • Jul
    • T. Robinson and F. Fallside, "A recurrent error propagation network speech recognition system," Comput. Speech Lang., vol. 5, no. 3, pp. 259-274, Jul. 1991.
    • (1991) Comput. Speech Lang , vol.5 , Issue.3 , pp. 259-274
    • Robinson, T.1    Fallside, F.2
  • 35
    • 0031268931 scopus 로고    scopus 로고
    • Bidirectional recurrent neural networks
    • PII S1053587X97080550
    • M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, Nov. 1997. (Pubitemid 127766336)
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.11 , pp. 2673-2681
    • Schuster, M.1    Paliwal, K.K.2
  • 36
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Oct
    • P. Werbos, "Backpropagation through time: what it does and how to do it," Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.
    • (1990) Proc IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.1
  • 37
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, no. 2, pp. 270-280, 1989.
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 38
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 39
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997. (Pubitemid 127462305)
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 42
    • 51849149899 scopus 로고    scopus 로고
    • Stabilizing and improving the learning speed of 2-layered LSTM network
    • D. Correa, A. Levada, and J. Saito, "Stabilizing and improving the learning speed of 2-layered LSTM network," in Proc. CSE, , 2008, pp. 293-300.
    • (2008) Proc. CSE , pp. 293-300
    • Correa, D.1    Levada, A.2    Saito, J.3
  • 43
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Aug
    • G. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Comput., vol. 14, no. 8, pp. 1771-1800, Aug. 2002.
    • (2002) Neural Comput , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.1
  • 44
    • 84865768819 scopus 로고    scopus 로고
    • Deep convex net: A scalable architecture for speech pattern classification
    • L. Deng and D. Yu, "Deep convex net: A scalable architecture for speech pattern classification," in Proc. Interspeech, 2011, pp. 2285-2288.
    • (2011) Proc. Interspeech , pp. 2285-2288
    • Deng, L.1    Yu, D.2
  • 46
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Nov
    • W. Maass, T. Natschlager, and H. Markram, "Real-time computing without stable states: A new framework for neural computation based on perturbations," Neural Comput., vol. 14, no. 11, pp. 2531-2560, Nov. 2002.
    • (2002) Neural Comput , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlager, T.2    Markram, H.3
  • 47
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky- integrator neurons
    • DOI 10.1016/j.neunet.2007.04.016, PII S089360800700041X, Echo State Networks and Liquid State Machines
    • H. Jaeger, M. Lukosevi?ius, D. Popovici, and U. Siewert, "Optimization and applications of echo state networks with leaky-integrator neurons," Neural Netw., vol. 20, no. 3, pp. 335-352, Apr. 2007. (Pubitemid 46876638)
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukosevicius, M.2    Popovici, D.3    Siewert, U.4
  • 48
    • 34249753618 scopus 로고
    • Support-vector networks
    • Sep
    • C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, Sep. 1995.
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 49
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Jan
    • C. M. Bishop, "Training with noise is equivalent to Tikhonov regularization," Neural Comput., vol. 7, no. 1, pp. 108-116, Jan. 1994.
    • (1994) Neural Comput , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 50
    • 84952505343 scopus 로고
    • Ridge regression in practice
    • Feb
    • D. W. Marquardt and R. D. Snee, "Ridge regression in practice," Amer. Statist., vol. 29, no. 1, pp. 3-20, Feb. 1975.
    • (1975) Amer. Statist , vol.29 , Issue.1 , pp. 3-20
    • Marquardt, D.W.1    Snee, R.D.2
  • 51
    • 84947145047 scopus 로고
    • A generalized inverse for matrices
    • Jul
    • R. Penrose, "A generalized inverse for matrices," Proc. Cambridge Philosoph. Soc., vol. 51, pp. 406-413, Jul. 1955.
    • (1955) Proc. Cambridge Philosoph. Soc , vol.51 , pp. 406-413
    • Penrose, R.1
  • 53
    • 0024768209 scopus 로고
    • Speaker-independent phone recognition using hidden Markov models
    • Nov
    • K. F. Lee and H.-W. Hon, "Speaker-independent phone recognition using hidden Markov models," IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 11, pp. 1641-1648, Nov. 1989.
    • (1989) IEEE Trans. Acoust., Speech, Signal Process , vol.37 , Issue.11 , pp. 1641-1648
    • Lee, K.F.1    Hon, H.-W.2
  • 54
    • 0019053271 scopus 로고
    • Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
    • S. Davis and P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28, no. 4, pp. 357-366, Aug. 1980. (Pubitemid 11464930)
    • (1980) IEEE Transactions on Acoustics, Speech, and Signal Processing , vol.ASSP-28 , Issue.4 , pp. 357-366
    • Davis Steven, B.1    Mermelstein Paul2
  • 56
    • 84857152342 scopus 로고    scopus 로고
    • Can non-linear readout nodes enhance the performance of reservoir-based speech recognizers?
    • F. Triefenbach and J.-P. Martens, "Can non-linear readout nodes enhance the performance of reservoir-based speech recognizers?," in Proc. ICI, 2011, pp. 262-267.
    • (2011) Proc , pp. 262-267
    • Triefenbach, F.1    Martens, J.-P.2
  • 57
    • 0031624622 scopus 로고    scopus 로고
    • Improved phone recognition using bayesian triphone models
    • J. Ming and F. Smith, "Improved phone recognition using bayesian triphone models," in Proc. ICASSP, 1998, pp. 409-412.
    • (1998) Proc. ICASSP , pp. 409-412
    • Ming, J.1    Smith, F.2
  • 58
    • 34547551709 scopus 로고    scopus 로고
    • Use of differential cepstra as acoustic features in hidden trajectorymodeling for phonetic recognition
    • L. Deng and D. Yu, "Use of differential cepstra as acoustic features in hidden trajectorymodeling for phonetic recognition," in Proc. ICASSP, 2007, pp. 445-448.
    • (2007) Proc. ICASSP , pp. 445-448
    • Deng, L.1    Yu, D.2
  • 59
    • 84874271357 scopus 로고    scopus 로고
    • Improving large vocabulary continuous speech recognition by combining GMM-based and reservoir-based acoustic modeling
    • F. Triefenbach, K. Demuynck, and J.-P. Martens, "Improving large vocabulary continuous speech recognition by combining GMM-based and reservoir-based acoustic modeling," in Proc. SLT, 2012, pp. 107-112.
    • Proc. SLT , vol.2012 , pp. 107-112
    • Triefenbach, F.1    Demuynck, K.2    Martens, J.-P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.