-
1
-
-
33750417685
-
Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
-
Benaoudaa D, Murtaghb F, Starckc JL, Renaud O (2006) Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting. Neurocomputing 70(1–3):139–154
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 139-154
-
-
Benaoudaa, D.1
Murtaghb, F.2
Starckc, J.L.3
Renaud, O.4
-
2
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157–166
-
(1994)
IEEE Trans Neural Netw
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
3
-
-
78349272309
-
Initialization and self-organized optimization of recurrent neural network connectivity
-
Boedecker J, Obst O, Mayer NM, Asada M (2009) Initialization and self-organized optimization of recurrent neural network connectivity. HFSP J 3(5):340–349
-
(2009)
HFSP J
, vol.3
, Issue.5
, pp. 340-349
-
-
Boedecker, J.1
Obst, O.2
Mayer, N.M.3
Asada, M.4
-
5
-
-
37849045839
-
Overs L (2007) Long-duration solar-powered wireless sensor networks
-
ACM, New York:
-
Corke P, Valencia P, Sikka P, Wark T, Overs L (2007) Long-duration solar-powered wireless sensor networks. In: EmNets ’07 proceedings of the 4th workshop on embedded networked sensors. ACM, New York, pp 33–37
-
EmNets ’07 proceedings of the 4th workshop on embedded networked sensors
, pp. 33-37
-
-
Corke, P.1
Valencia, P.2
Sikka, P.3
Wark, T.4
-
6
-
-
3142707201
-
Power-conserving computation of order-statistics over sensor networks. In: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems
-
Greenwald MB, Khanna S (2004) Power-conserving computation of order-statistics over sensor networks. In: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, pp 275–285
-
(2004)
pp 275–285
-
-
Greenwald, M.B.1
Khanna, S.2
-
7
-
-
84890308118
-
Self organizing maps for time series
-
Hammer B, Micheli A, Neubauer N, Sperduti A, Strickert M (2005) Self organizing maps for time series. In: Proceedings of WSOM 2005, pp 115–122
-
(2005)
Proceedings of WSOM
, vol.2005
, pp. 115-122
-
-
Hammer, B.1
Micheli, A.2
Neubauer, N.3
Sperduti, A.4
Strickert, M.5
-
8
-
-
84887010605
-
Recent advances in efficient learning of recurrent networks. In: ESANN’2009 proceedings, European symposium on artificial neural networks—advances in computational intelligence and, learning
-
Hammer B, Schrauwen B, Steil JJ (2009) Recent advances in efficient learning of recurrent networks. In: ESANN’2009 proceedings, European symposium on artificial neural networks—advances in computational intelligence and, learning, pp 213–226
-
(2009)
pp 213–226
-
-
Hammer, B.1
Schrauwen, B.2
Steil, J.J.3
-
10
-
-
84890466217
-
Improving neural networks by preventing co-adaptation of feature detectors. Department of Computer Science
-
Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. Department of Computer Science, University of Toronto (arXiv preprint 1207.0580)
-
(2012)
University of Toronto (arXiv preprint
, vol.1207
, pp. 0580
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
11
-
-
0042276525
-
The vanishing gradient problem during learning recurrent neural nets and problem solutions
-
Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain Fuzziness Knowl Based Syst 6(2):107–116
-
(1998)
Int J Uncertain Fuzziness Knowl Based Syst
, vol.6
, Issue.2
, pp. 107-116
-
-
Hochreiter, S.1
-
13
-
-
1842436050
-
The “echo state” approach to analysing and training recurrent neural networks. GMD Report 148, GMD
-
Jaeger, H (2001) The “echo state” approach to analysing and training recurrent neural networks. GMD Report 148, GMD, German National Research Institute for Computer Science
-
(2001)
German National Research Institute for Computer Science
-
-
Jaeger, H.1
-
14
-
-
33749833931
-
Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach. GMD Report 159
-
Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach. GMD Report 159, Fraunhofer Institute AIS
-
(2002)
Fraunhofer Institute AIS
-
-
Jaeger, H.1
-
15
-
-
1842421269
-
Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
-
Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80
-
(2004)
Science
, vol.304
, Issue.5667
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
16
-
-
68649088777
-
Reservoir computing approaches to recurrent neural network training
-
Lukosevicius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149
-
(2009)
Comput Sci Rev
, vol.3
, Issue.3
, pp. 127-149
-
-
Lukosevicius, M.1
Jaeger, H.2
-
18
-
-
71049126914
-
(2009) Distributed fault detection using a recurrent neural network. In: Proceedings of the international conference on information processing in sensor networks (IPSN 2009). IEEE Computer Society, Washington
-
Obst O (2009) Distributed fault detection using a recurrent neural network. In: Proceedings of the international conference on information processing in sensor networks (IPSN 2009). IEEE Computer Society, Washington, pp 373–374 (2009)
-
(2009)
pp 373–374
-
-
Obst, O.1
-
19
-
-
51249088236
-
Using echo state networks for anomaly detection in underground coal mines
-
IEEE Computer Society, Los Alamitos:
-
Obst O, Wang XR, Prokopenko M (2008) Using echo state networks for anomaly detection in underground coal mines. In: Proceedings of the international conference on information processing in sensor networks (IPSN 2008). IEEE Computer Society, Los Alamitos, pp 219–229
-
(2008)
Proceedings of the international conference on information processing in sensor networks (IPSN
, vol.2008
, pp. 219-229
-
-
Obst, O.1
Wang, X.R.2
Prokopenko, M.3
-
20
-
-
34548725373
-
Recurrent neural network based predictions of elephant migration in a South African game reserve
-
Vancouver: BC
-
Palangpour P, Venayagamoorthy GK, Duffy K (2006) Recurrent neural network based predictions of elephant migration in a South African game reserve. In: Proceedings of the international joint conference on neural networks (IJCNN 2006), Vancouver, BC, pp 4084–4088
-
(2006)
Proceedings of the international joint conference on neural networks (IJCNN
, vol.2006
, pp. 4084-4088
-
-
Palangpour, P.1
Venayagamoorthy, G.K.2
Duffy, K.3
-
21
-
-
49049108320
-
A novel recurrent neural network-based prediction system for option trading and hedging
-
Quek C, Pasquier M, Kumar N (2008) A novel recurrent neural network-based prediction system for option trading and hedging. Appl Intell 29(2):138–151
-
(2008)
Appl Intell
, vol.29
, Issue.2
, pp. 138-151
-
-
Quek, C.1
Pasquier, M.2
Kumar, N.3
-
22
-
-
33847649288
-
Training recurrent networks by evolino
-
Schmidhuber J, Wierstra D, Gagliolo M, Gomez F (2007) Training recurrent networks by evolino. Neural Comput 19(3):757–779
-
(2007)
Neural Comput
, vol.19
, Issue.3
, pp. 757-779
-
-
Schmidhuber, J.1
Wierstra, D.2
Gagliolo, M.3
Gomez, F.4
-
23
-
-
84880715730
-
Evolino: hybrid neuroevolution/optimal linear search for sequence learning
-
Schmidhuber J, Wierstra D, Gomez FJ (2005) Evolino: hybrid neuroevolution/optimal linear search for sequence learning. In: Kaelbling LP, Saffiotti A (eds) Proceedings of the nineteenth international joint conference on artificial intelligence (IJCAI-05), pp 853–858
-
(2005)
Proceedings of the nineteenth international joint conference on artificial intelligence (IJCAI-05)
, pp. 853-858
-
-
Schmidhuber, J.1
Wierstra, D.2
Gomez, F.J.3
Kaelbling, L.P.4
Saffiotti, A.5
-
24
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the twenty-fifth international conference (ICML 2008), pp 1096–1103
-
(2008)
Proceedings of the twenty-fifth international conference (ICML
, vol.2008
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.A.4
-
26
-
-
0025503558
-
Backpropagation through time: what it does and how to do it
-
Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550–1560
-
(1990)
Proc IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
|