메뉴 건너뛰기




Volumn 40, Issue 3, 2014, Pages 261-273

Distributed Fault Detection in Sensor Networks using a Recurrent Neural Network

Author keywords

Fault detection; Neural networks; Reservoir computing; Sensor networks

Indexed keywords

FAULT DETECTION; LEARNING SYSTEMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; SENSOR NETWORKS;

EID: 84912069513     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-013-9327-4     Document Type: Article
Times cited : (32)

References (26)
  • 1
    • 33750417685 scopus 로고    scopus 로고
    • Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
    • Benaoudaa D, Murtaghb F, Starckc JL, Renaud O (2006) Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting. Neurocomputing 70(1–3):139–154
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 139-154
    • Benaoudaa, D.1    Murtaghb, F.2    Starckc, J.L.3    Renaud, O.4
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157–166
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 78349272309 scopus 로고    scopus 로고
    • Initialization and self-organized optimization of recurrent neural network connectivity
    • Boedecker J, Obst O, Mayer NM, Asada M (2009) Initialization and self-organized optimization of recurrent neural network connectivity. HFSP J 3(5):340–349
    • (2009) HFSP J , vol.3 , Issue.5 , pp. 340-349
    • Boedecker, J.1    Obst, O.2    Mayer, N.M.3    Asada, M.4
  • 6
    • 3142707201 scopus 로고    scopus 로고
    • Power-conserving computation of order-statistics over sensor networks. In: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems
    • Greenwald MB, Khanna S (2004) Power-conserving computation of order-statistics over sensor networks. In: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, pp 275–285
    • (2004) pp 275–285
    • Greenwald, M.B.1    Khanna, S.2
  • 8
    • 84887010605 scopus 로고    scopus 로고
    • Recent advances in efficient learning of recurrent networks. In: ESANN’2009 proceedings, European symposium on artificial neural networks—advances in computational intelligence and, learning
    • Hammer B, Schrauwen B, Steil JJ (2009) Recent advances in efficient learning of recurrent networks. In: ESANN’2009 proceedings, European symposium on artificial neural networks—advances in computational intelligence and, learning, pp 213–226
    • (2009) pp 213–226
    • Hammer, B.1    Schrauwen, B.2    Steil, J.J.3
  • 11
    • 0042276525 scopus 로고    scopus 로고
    • The vanishing gradient problem during learning recurrent neural nets and problem solutions
    • Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain Fuzziness Knowl Based Syst 6(2):107–116
    • (1998) Int J Uncertain Fuzziness Knowl Based Syst , vol.6 , Issue.2 , pp. 107-116
    • Hochreiter, S.1
  • 13
    • 1842436050 scopus 로고    scopus 로고
    • The “echo state” approach to analysing and training recurrent neural networks. GMD Report 148, GMD
    • Jaeger, H (2001) The “echo state” approach to analysing and training recurrent neural networks. GMD Report 148, GMD, German National Research Institute for Computer Science
    • (2001) German National Research Institute for Computer Science
    • Jaeger, H.1
  • 14
    • 33749833931 scopus 로고    scopus 로고
    • Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach. GMD Report 159
    • Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach. GMD Report 159, Fraunhofer Institute AIS
    • (2002) Fraunhofer Institute AIS
    • Jaeger, H.1
  • 15
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
    • Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 16
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • Lukosevicius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149
    • (2009) Comput Sci Rev , vol.3 , Issue.3 , pp. 127-149
    • Lukosevicius, M.1    Jaeger, H.2
  • 18
    • 71049126914 scopus 로고    scopus 로고
    • (2009) Distributed fault detection using a recurrent neural network. In: Proceedings of the international conference on information processing in sensor networks (IPSN 2009). IEEE Computer Society, Washington
    • Obst O (2009) Distributed fault detection using a recurrent neural network. In: Proceedings of the international conference on information processing in sensor networks (IPSN 2009). IEEE Computer Society, Washington, pp 373–374 (2009)
    • (2009) pp 373–374
    • Obst, O.1
  • 21
    • 49049108320 scopus 로고    scopus 로고
    • A novel recurrent neural network-based prediction system for option trading and hedging
    • Quek C, Pasquier M, Kumar N (2008) A novel recurrent neural network-based prediction system for option trading and hedging. Appl Intell 29(2):138–151
    • (2008) Appl Intell , vol.29 , Issue.2 , pp. 138-151
    • Quek, C.1    Pasquier, M.2    Kumar, N.3
  • 26
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550–1560
    • (1990) Proc IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.