메뉴 건너뛰기




Volumn 25, Issue , 2012, Pages 70-83

A generalized LSTM-like training algorithm for second-order recurrent neural networks

Author keywords

Gradient based training; Long Short Term Memory (LSTM); Recurrent neural network; Sequential retrieval; Temporal sequence processing

Indexed keywords

GRADIENT BASED; LOCAL ENVIRONMENTS; LONG SHORT TERM MEMORIES; OPERATING INSTRUCTIONS; ORIGINAL ALGORITHMS; RECURRENT NETWORKS; SECOND ORDERS; SEQUENTIAL RETRIEVAL; SHORT TERM MEMORY; SINGLE LAYER; SPATIAL AND TEMPORAL LOCALITY; SPECIFIC TASKS; TEMPORAL SEQUENCES; TRAINING ALGORITHMS;

EID: 82355185899     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.07.003     Document Type: Article
Times cited : (83)

References (23)
  • 2
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science 1990, 14:179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 3
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: continual prediction with LSTM
    • Gers F.A., Cummins F. learning to forget: continual prediction with LSTM. Neural Computation 2000, 12:2451-2471.
    • (2000) Neural Computation , vol.12 , pp. 2451-2471
    • Gers, F.A.1    Cummins, F.2
  • 4
    • 0038764011 scopus 로고    scopus 로고
    • Kalman filters improve LSTM network performancee in problems unsolvable by traditional recurrent nets
    • Gers F.A., Pérez-Ortiz J.A., Eck D., Schmidhuber J. Kalman filters improve LSTM network performancee in problems unsolvable by traditional recurrent nets. Neural Networks 2003, 16:241-250.
    • (2003) Neural Networks , vol.16 , pp. 241-250
    • Gers, F.A.1    Pérez-Ortiz, J.A.2    Eck, D.3    Schmidhuber, J.4
  • 6
    • 0035505385 scopus 로고    scopus 로고
    • LSTM recurrent networks learn simple context-free and context-sensitive languages
    • Gers F.A., Schmidhuber J. LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks 2001, 12:1333-1340.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1333-1340
    • Gers, F.A.1    Schmidhuber, J.2
  • 7
    • 0023513717 scopus 로고
    • Learning, invariance, and generalization in high-order neural networks
    • Giles C.L., Maxwell T. Learning, invariance, and generalization in high-order neural networks. Applied Optics 1987, 26:4972-4978.
    • (1987) Applied Optics , vol.26 , pp. 4972-4978
    • Giles, C.L.1    Maxwell, T.2
  • 9
    • 82355189501 scopus 로고    scopus 로고
    • Offline handwriting recognition with multidimensional recurrent neural networks
    • D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.)
    • Graves A., Schmidhuber J. offline handwriting recognition with multidimensional recurrent neural networks. Neural information processing systems: Vol. 21 2008, D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.).
    • (2008) Neural information processing systems: Vol. 21
    • Graves, A.1    Schmidhuber, J.2
  • 10
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton G.E. Connectionist learning procedures. Artificial Intelligence 1989, 40:185-234.
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 12
    • 0001257629 scopus 로고
    • Experimental comparison of the effect of order in recurrent neural networks
    • Miller C.B., Giles C.L. Experimental comparison of the effect of order in recurrent neural networks. Pattern Recognition 1993, 7:849-872.
    • (1993) Pattern Recognition , vol.7 , pp. 849-872
    • Miller, C.B.1    Giles, C.L.2
  • 15
    • 0023834038 scopus 로고
    • Higher order associative memories and their optical implementations
    • Psaltis D., Park C., Hong J. Higher order associative memories and their optical implementations. Neural Networks 1988, 1:149-163.
    • (1988) Neural Networks , vol.1 , pp. 149-163
    • Psaltis, D.1    Park, C.2    Hong, J.3
  • 16
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • Puskorius G.V., Feldkamp L.A. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks 1994, 5:279-297.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 17
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 19
    • 0026375443 scopus 로고
    • The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation
    • Shin, Y., & Ghosh, J. (1991). The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation. In Proceedings of the international joint conference on neural networks (pp. 13-18).
    • (1991) Proceedings of the international joint conference on neural networks. , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 21
    • 33747875969 scopus 로고    scopus 로고
    • Simulating single word processing in the classic aphasia syndromes based on the Wernicke-Lichtheim-Geschwind theory
    • Weems S.A., Reggia J.A. Simulating single word processing in the classic aphasia syndromes based on the Wernicke-Lichtheim-Geschwind theory. Brain and Language 2006, 98:291-309.
    • (2006) Brain and Language , vol.98 , pp. 291-309
    • Weems, S.A.1    Reggia, J.A.2
  • 22
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos P.J. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 1990, 78:1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 23
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1989, 1:270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.