메뉴 건너뛰기




Volumn 33, Issue 9, 2015, Pages 525-533

PiggyBac-ing models and new therapeutic strategies

Author keywords

Cell therapy; Immunotherapy; IPSC; PiggyBac; Transgenesis; Transposon

Indexed keywords

CYTOLOGY; DNA; DNA SEQUENCES; GENE EXPRESSION; GENE TRANSFER; MAMMALS; STEM CELLS;

EID: 84940450173     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.06.009     Document Type: Review
Times cited : (103)

References (78)
  • 1
    • 0030662074 scopus 로고    scopus 로고
    • Molecular reconstruction of Sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells
    • Ivics Z., et al. Molecular reconstruction of Sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997, 91:501-510.
    • (1997) Cell , vol.91 , pp. 501-510
    • Ivics, Z.1
  • 2
    • 0024449118 scopus 로고
    • Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses
    • Cary L.C., et al. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 1989, 172:156-169.
    • (1989) Virology , vol.172 , pp. 156-169
    • Cary, L.C.1
  • 3
    • 0029151025 scopus 로고
    • Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA
    • Fraser M.J., et al. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 1995, 211:397-407.
    • (1995) Virology , vol.211 , pp. 397-407
    • Fraser, M.J.1
  • 4
    • 23744479962 scopus 로고    scopus 로고
    • Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice
    • Ding S., et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 2005, 122:473-483.
    • (2005) Cell , vol.122 , pp. 473-483
    • Ding, S.1
  • 5
    • 33845981514 scopus 로고    scopus 로고
    • PiggyBac transposon-mediated gene transfer in human cells
    • Wilson M.H., et al. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 2007, 15:139-145.
    • (2007) Mol. Ther. , vol.15 , pp. 139-145
    • Wilson, M.H.1
  • 6
    • 41949108098 scopus 로고    scopus 로고
    • PiggyBac can bypass DNA synthesis during cut and paste transposition
    • Mitra R., et al. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J. 2008, 27:1097-1109.
    • (2008) EMBO J. , vol.27 , pp. 1097-1109
    • Mitra, R.1
  • 7
    • 64749083939 scopus 로고    scopus 로고
    • PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells
    • Woltjen K., et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009, 458:766-770.
    • (2009) Nature , vol.458 , pp. 766-770
    • Woltjen, K.1
  • 8
    • 65449154892 scopus 로고    scopus 로고
    • Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon
    • Yusa K., et al. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods 2009, 6:363-369.
    • (2009) Nat. Methods , vol.6 , pp. 363-369
    • Yusa, K.1
  • 9
    • 78449294626 scopus 로고    scopus 로고
    • PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice
    • Rad R., et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 2010, 330:1104-1107.
    • (2010) Science , vol.330 , pp. 1104-1107
    • Rad, R.1
  • 10
    • 77957338371 scopus 로고    scopus 로고
    • A DNA transposon-based approach to functional screening in neural stem cells
    • Albieri I., et al. A DNA transposon-based approach to functional screening in neural stem cells. J. Biotechnol. 2010, 150:11-21.
    • (2010) J. Biotechnol. , vol.150 , pp. 11-21
    • Albieri, I.1
  • 11
    • 79953161952 scopus 로고    scopus 로고
    • Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells
    • You L., et al. Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells. Biochem. Biophys. Res. Commun. 2011, 407:1-6.
    • (2011) Biochem. Biophys. Res. Commun. , vol.407 , pp. 1-6
    • You, L.1
  • 12
    • 62949113127 scopus 로고    scopus 로고
    • A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells
    • Wang W., et al. A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genome Res. 2009, 19:667-673.
    • (2009) Genome Res. , vol.19 , pp. 667-673
    • Wang, W.1
  • 13
    • 78649351341 scopus 로고    scopus 로고
    • Slingshot: a PiggyBac based transposon system for tamoxifen-inducible 'self-inactivating' insertional mutagenesis
    • Kong J., et al. Slingshot: a PiggyBac based transposon system for tamoxifen-inducible 'self-inactivating' insertional mutagenesis. Nucleic Acids Res. 2010, 38:e173.
    • (2010) Nucleic Acids Res. , vol.38 , pp. e173
    • Kong, J.1
  • 14
    • 34347337601 scopus 로고    scopus 로고
    • Toward simpler and faster genome-wide mutagenesis in mice
    • Wu S., et al. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 2007, 39:922-930.
    • (2007) Nat. Genet. , vol.39 , pp. 922-930
    • Wu, S.1
  • 15
    • 80054844707 scopus 로고    scopus 로고
    • PiggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART) for genetic screens in mice
    • Landrette S.F., et al. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART) for genetic screens in mice. PLoS ONE 2011, 6:e26650.
    • (2011) PLoS ONE , vol.6 , pp. e26650
    • Landrette, S.F.1
  • 16
    • 84964312485 scopus 로고    scopus 로고
    • A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer
    • Rad R., et al. A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nat. Genet. 2015, 47:47-56.
    • (2015) Nat. Genet. , vol.47 , pp. 47-56
    • Rad, R.1
  • 17
    • 70349176337 scopus 로고    scopus 로고
    • Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons
    • Liang Q., et al. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons. Genesis 2009, 47:404-408.
    • (2009) Genesis , vol.47 , pp. 404-408
    • Liang, Q.1
  • 18
    • 48249130858 scopus 로고    scopus 로고
    • Chromosomal transposition of PiggyBac in mouse embryonic stem cells
    • Wang W., et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:9290-9295.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 9290-9295
    • Wang, W.1
  • 19
    • 84861865074 scopus 로고    scopus 로고
    • Transposon-mediated transgenesis in rats
    • Published online October 1, 2007
    • Jang C.W., Behringer R.R. Transposon-mediated transgenesis in rats. CSH Protoc. 2007, Published online October 1, 2007. 10.1101/pdb.prot4866.
    • (2007) CSH Protoc.
    • Jang, C.W.1    Behringer, R.R.2
  • 20
    • 84884560080 scopus 로고    scopus 로고
    • Generation of transgenic rats through induced pluripotent stem cells
    • Jiang M.G., et al. Generation of transgenic rats through induced pluripotent stem cells. J. Biol. Chem. 2013, 288:27150-32718.
    • (2013) J. Biol. Chem. , vol.288 , pp. 27150-32718
    • Jiang, M.G.1
  • 21
    • 84891662454 scopus 로고    scopus 로고
    • Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer
    • Wu Z., et al. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res. 2013, 22:1107-1118.
    • (2013) Transgenic Res. , vol.22 , pp. 1107-1118
    • Wu, Z.1
  • 22
    • 84903770205 scopus 로고    scopus 로고
    • Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids
    • Li Z., et al. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol. Reprod. 2014, 90:93.
    • (2014) Biol. Reprod. , vol.90 , pp. 93
    • Li, Z.1
  • 23
    • 76549130748 scopus 로고    scopus 로고
    • Multiplexed transposon-mediated stable gene transfer in human cells
    • Kahlig K.M., et al. Multiplexed transposon-mediated stable gene transfer in human cells. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:1343-1348.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 1343-1348
    • Kahlig, K.M.1
  • 24
    • 84877293705 scopus 로고    scopus 로고
    • Modular assembly of transposon integratable multigene vectors using RecWay assembly
    • Moriarity B.S., et al. Modular assembly of transposon integratable multigene vectors using RecWay assembly. Nucleic Acids Res. 2013, 41:e92.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e92
    • Moriarity, B.S.1
  • 25
    • 84875499149 scopus 로고    scopus 로고
    • Simple piggyBac transposon-based mammalian cell expression system for inducible protein production
    • Li Z., et al. Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5004-5009.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5004-5009
    • Li, Z.1
  • 26
    • 84925070275 scopus 로고    scopus 로고
    • Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools
    • Balasubramanian S., et al. Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools. J. Biotechnol. 2015, 200:61-69.
    • (2015) J. Biotechnol. , vol.200 , pp. 61-69
    • Balasubramanian, S.1
  • 27
    • 84876544676 scopus 로고    scopus 로고
    • Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro
    • Tanaka A., et al. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS ONE 2013, 8:e61540.
    • (2013) PLoS ONE , vol.8 , pp. e61540
    • Tanaka, A.1
  • 28
    • 84868102032 scopus 로고    scopus 로고
    • Transposon-mediated BAC transgenesis in human ES cells
    • Rostovskaya M., et al. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res. 2012, 40:e150.
    • (2012) Nucleic Acids Res. , vol.40 , pp. e150
    • Rostovskaya, M.1
  • 29
    • 36248966518 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from adult human fibroblasts by defined factors
    • Takahashi K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861-872.
    • (2007) Cell , vol.131 , pp. 861-872
    • Takahashi, K.1
  • 30
    • 36749043230 scopus 로고    scopus 로고
    • Induced pluripotent stem cell lines derived from human somatic cells
    • Yu J.Y., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
    • (2007) Science , vol.318 , pp. 1917-1920
    • Yu, J.Y.1
  • 31
    • 65249149666 scopus 로고    scopus 로고
    • Induced pluripotent stem cell generation using a single lentiviral stem cell cassette
    • Sommer C.A., et al. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 2009, 27:543-549.
    • (2009) Stem Cells , vol.27 , pp. 543-549
    • Sommer, C.A.1
  • 32
    • 84933675448 scopus 로고    scopus 로고
    • KLF4 N-terminal variance modulates induced reprogramming to pluripotency
    • Kim S.I., et al. KLF4 N-terminal variance modulates induced reprogramming to pluripotency. Stem Cell Rep. 2015, 4:727-743.
    • (2015) Stem Cell Rep. , vol.4 , pp. 727-743
    • Kim, S.I.1
  • 33
    • 34249880066 scopus 로고    scopus 로고
    • Generation of germline-competent induced pluripotent stem cells
    • Okita K., et al. Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448:313-317.
    • (2007) Nature , vol.448 , pp. 313-317
    • Okita, K.1
  • 34
    • 64749111225 scopus 로고    scopus 로고
    • Virus-free induction of pluripotency and subsequent excision of reprogramming factors
    • Kaji K., et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009, 458:771-775.
    • (2009) Nature , vol.458 , pp. 771-775
    • Kaji, K.1
  • 35
    • 79960290466 scopus 로고    scopus 로고
    • Induced pluripotent stem cell lines derived from equine fibroblasts
    • Nagy K., et al. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev. 2011, 7:693-702.
    • (2011) Stem Cell Rev. , vol.7 , pp. 693-702
    • Nagy, K.1
  • 36
    • 80054987997 scopus 로고    scopus 로고
    • Targeted gene correction of alpha(1)-antitrypsin deficiency in induced pluripotent stem cells
    • Yusa K., et al. Targeted gene correction of alpha(1)-antitrypsin deficiency in induced pluripotent stem cells. Nature 2011, 478:391.
    • (2011) Nature , vol.478 , pp. 391
    • Yusa, K.1
  • 37
    • 77953132759 scopus 로고    scopus 로고
    • Comparative analysis of transposable element vector systems in human cells
    • Grabundzija I., et al. Comparative analysis of transposable element vector systems in human cells. Mol. Ther. 2010, 18:1200-1209.
    • (2010) Mol. Ther. , vol.18 , pp. 1200-1209
    • Grabundzija, I.1
  • 38
    • 84863393501 scopus 로고    scopus 로고
    • Hyperactive piggyBac gene transfer in human cells and in vivo
    • Doherty J.E., et al. Hyperactive piggyBac gene transfer in human cells and in vivo. Hum. Gene Ther. 2012, 23:311-320.
    • (2012) Hum. Gene Ther. , vol.23 , pp. 311-320
    • Doherty, J.E.1
  • 39
    • 30444432097 scopus 로고    scopus 로고
    • Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system
    • Huang X., et al. Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system. Blood 2006, 107:483-491.
    • (2006) Blood , vol.107 , pp. 483-491
    • Huang, X.1
  • 40
    • 77950525914 scopus 로고    scopus 로고
    • A transposon and transposase system for human application
    • Hackett P.B., et al. A transposon and transposase system for human application. Mol. Ther. 2010, 18:674-683.
    • (2010) Mol. Ther. , vol.18 , pp. 674-683
    • Hackett, P.B.1
  • 41
    • 70349696650 scopus 로고    scopus 로고
    • Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes
    • Nakazawa Y., et al. Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. J. Immunother. 2009, 32:826-836.
    • (2009) J. Immunother. , vol.32 , pp. 826-836
    • Nakazawa, Y.1
  • 42
    • 70349673723 scopus 로고    scopus 로고
    • Genome-wide mapping of PiggyBac transposon integrations in primary human T cells
    • Galvan D.L., et al. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J. Immunother. 2009, 32:837-844.
    • (2009) J. Immunother. , vol.32 , pp. 837-844
    • Galvan, D.L.1
  • 43
    • 77950953208 scopus 로고    scopus 로고
    • PiggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies
    • Manuri P.V., et al. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum. Gene Ther. 2010, 21:427-437.
    • (2010) Hum. Gene Ther. , vol.21 , pp. 427-437
    • Manuri, P.V.1
  • 44
    • 77649221824 scopus 로고    scopus 로고
    • Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients
    • Heslop H.E., et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 2010, 115:925-935.
    • (2010) Blood , vol.115 , pp. 925-935
    • Heslop, H.E.1
  • 45
    • 82955187824 scopus 로고    scopus 로고
    • PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor
    • Nakazawa Y., et al. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol. Ther. 2011, 19:2133-2143.
    • (2011) Mol. Ther. , vol.19 , pp. 2133-2143
    • Nakazawa, Y.1
  • 46
    • 82955195419 scopus 로고    scopus 로고
    • Combining mTor inhibitors with rapamycin-resistant T cells: a two-pronged approach to tumor elimination
    • Huye L.E., et al. Combining mTor inhibitors with rapamycin-resistant T cells: a two-pronged approach to tumor elimination. Mol. Ther. 2011, 19:2239-2248.
    • (2011) Mol. Ther. , vol.19 , pp. 2239-2248
    • Huye, L.E.1
  • 47
    • 0034103009 scopus 로고    scopus 로고
    • Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system
    • Yant S.R., et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat. Genet. 2000, 25:35-41.
    • (2000) Nat. Genet. , vol.25 , pp. 35-41
    • Yant, S.R.1
  • 48
    • 77950521465 scopus 로고    scopus 로고
    • PiggyBac transposon-mediated long-term gene expression in mice
    • Nakanishi H., et al. piggyBac transposon-mediated long-term gene expression in mice. Mol. Ther. 2010, 18:707-714.
    • (2010) Mol. Ther. , vol.18 , pp. 707-714
    • Nakanishi, H.1
  • 49
    • 73849086119 scopus 로고    scopus 로고
    • PiggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer
    • Saridey S.K., et al. PiggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol. Ther. 2009, 17:2115-2120.
    • (2009) Mol. Ther. , vol.17 , pp. 2115-2120
    • Saridey, S.K.1
  • 50
    • 84928027546 scopus 로고    scopus 로고
    • Protective role of insulin-like growth factor-1 receptor in endothelial cells against unilateral ureteral obstruction-induced renal fibrosis
    • Liang M., et al. Protective role of insulin-like growth factor-1 receptor in endothelial cells against unilateral ureteral obstruction-induced renal fibrosis. Am. J. Pathol. 2015, 185:1234-1250.
    • (2015) Am. J. Pathol. , vol.185 , pp. 1234-1250
    • Liang, M.1
  • 51
    • 84871222540 scopus 로고    scopus 로고
    • Loss of glutathione S-transferase A4 accelerates obstruction-induced tubule damage and renal fibrosis
    • Liang A., et al. Loss of glutathione S-transferase A4 accelerates obstruction-induced tubule damage and renal fibrosis. J. Pathol. 2012, 228:448-458.
    • (2012) J. Pathol. , vol.228 , pp. 448-458
    • Liang, A.1
  • 52
    • 84920853211 scopus 로고    scopus 로고
    • Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A
    • Matsui H., et al. Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A. PLoS ONE 2014, 9:e104957.
    • (2014) PLoS ONE , vol.9 , pp. e104957
    • Matsui, H.1
  • 53
    • 84988349784 scopus 로고    scopus 로고
    • Hyperactive piggyBac transposons for sustained and robust liver-targeted gene therapy
    • Di Matteo M., et al. Hyperactive piggyBac transposons for sustained and robust liver-targeted gene therapy. Mol. Ther. 2014, 22:1614-1624.
    • (2014) Mol. Ther. , vol.22 , pp. 1614-1624
    • Di Matteo, M.1
  • 54
    • 84927044699 scopus 로고    scopus 로고
    • Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon In vivo delivery
    • Cooney A.L., et al. Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon In vivo delivery. Mol. Ther. 2015, 23:667-674.
    • (2015) Mol. Ther. , vol.23 , pp. 667-674
    • Cooney, A.L.1
  • 55
    • 84932628030 scopus 로고    scopus 로고
    • A hybrid adenoviral vector system achieves efficient long-term gene expression in the liver via piggyBac transposition
    • Smith R.P., et al. A hybrid adenoviral vector system achieves efficient long-term gene expression in the liver via piggyBac transposition. Hum. Gene Ther. 2015, 26:377-385.
    • (2015) Hum. Gene Ther. , vol.26 , pp. 377-385
    • Smith, R.P.1
  • 56
    • 84898778301 scopus 로고    scopus 로고
    • A guide to genome engineering with programmable nucleases
    • Kim H., Kim J.S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 2014, 15:321-334.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 321-334
    • Kim, H.1    Kim, J.S.2
  • 57
    • 84923275611 scopus 로고    scopus 로고
    • Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
    • Frock R.L., et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 2015, 33:179-186.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 179-186
    • Frock, R.L.1
  • 58
    • 0030152925 scopus 로고    scopus 로고
    • Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera
    • Fraser M.J., et al. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect. Mol. Biol. 1996, 5:141-151.
    • (1996) Insect. Mol. Biol. , vol.5 , pp. 141-151
    • Fraser, M.J.1
  • 59
    • 9144274389 scopus 로고    scopus 로고
    • Excision of Sleeping Beauty transposons: parameters and applications to gene therapy
    • Liu G.Y., et al. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J. Gene Med. 2004, 6:574-583.
    • (2004) J. Gene Med. , vol.6 , pp. 574-583
    • Liu, G.Y.1
  • 60
    • 84879319542 scopus 로고    scopus 로고
    • PiggyBac transposase tools for genome engineering
    • Li X., et al. piggyBac transposase tools for genome engineering. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E2279-E2287.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E2279-E2287
    • Li, X.1
  • 61
    • 34547638572 scopus 로고    scopus 로고
    • Generation of an inducible and optimized piggyBac transposon system
    • Cadinanos J., Bradley A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res. 2007, 35:e87.
    • (2007) Nucleic Acids Res. , vol.35 , pp. e87
    • Cadinanos, J.1    Bradley, A.2
  • 62
    • 80052422019 scopus 로고    scopus 로고
    • Manipulating piggyBac transposon chromosomal integration site selection in human cells
    • Kettlun C., et al. Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol. Ther. 2011, 19:1636-1644.
    • (2011) Mol. Ther. , vol.19 , pp. 1636-1644
    • Kettlun, C.1
  • 63
    • 33750060436 scopus 로고    scopus 로고
    • PiggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells
    • Wu S.C., et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:15008-15013.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 15008-15013
    • Wu, S.C.1
  • 64
    • 84863247956 scopus 로고    scopus 로고
    • 'Calling cards' for DNA-binding proteins in mammalian cells
    • Wang H., et al. 'Calling cards' for DNA-binding proteins in mammalian cells. Genetics 2012, 190:941-949.
    • (2012) Genetics , vol.190 , pp. 941-949
    • Wang, H.1
  • 65
    • 79955994750 scopus 로고    scopus 로고
    • Designing and testing chimeric zinc finger transposases
    • Wilson M.H., George A.L. Designing and testing chimeric zinc finger transposases. Methods Mol. Biol. 2010, 649:353-363.
    • (2010) Methods Mol. Biol. , vol.649 , pp. 353-363
    • Wilson, M.H.1    George, A.L.2
  • 66
    • 33845577011 scopus 로고    scopus 로고
    • Chimeric Mos1 and piggyBac transposases result in site-directed integration
    • Maragathavally K.J., et al. Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J. 2006, 20:1880-1882.
    • (2006) FASEB J. , vol.20 , pp. 1880-1882
    • Maragathavally, K.J.1
  • 67
    • 84864912788 scopus 로고    scopus 로고
    • Chimeric piggyBac transposases for genomic targeting in human cells
    • Owens J.B., et al. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res. 2012, 40:6978-6991.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 6978-6991
    • Owens, J.B.1
  • 68
    • 84886048819 scopus 로고    scopus 로고
    • Transcription activator like effector (TALE)-directed piggyBac transposition in human cells
    • Owens J.B., et al. Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res. 2013, 41:9197-9207.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 9197-9207
    • Owens, J.B.1
  • 69
    • 69249232195 scopus 로고    scopus 로고
    • An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells
    • Lacoste A., et al. An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 2009, 5:332-342.
    • (2009) Cell Stem Cell , vol.5 , pp. 332-342
    • Lacoste, A.1
  • 70
    • 79952138028 scopus 로고    scopus 로고
    • A hyperactive piggyBac transposase for mammalian applications
    • Yusa K., et al. A hyperactive piggyBac transposase for mammalian applications. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1531-1536.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1531-1536
    • Yusa, K.1
  • 71
    • 84936067788 scopus 로고    scopus 로고
    • Evaluating the potential for undesired genomic effects of the piggyBac transposon system in human cells
    • Saha S., et al. Evaluating the potential for undesired genomic effects of the piggyBac transposon system in human cells. Nucleic Acids Res 2015, 43:1770-1782.
    • (2015) Nucleic Acids Res , vol.43 , pp. 1770-1782
    • Saha, S.1
  • 72
    • 84873450062 scopus 로고    scopus 로고
    • A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture
    • Li X., et al. A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. Proc Natl Acad Sci USA 2013, 110:E478-E487.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E478-E487
    • Li, X.1
  • 73
    • 84869223704 scopus 로고    scopus 로고
    • Comparative analysis of the recently discovered hAT transposon TcBuster in human cells
    • Woodard L.E., et al. Comparative analysis of the recently discovered hAT transposon TcBuster in human cells. PLoS ONE 2012, 7:e42666.
    • (2012) PLoS ONE , vol.7 , pp. e42666
    • Woodard, L.E.1
  • 74
    • 84875260104 scopus 로고    scopus 로고
    • The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites
    • Li M.A., et al. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol. Cell. Biol. 2013, 33:1317-1330.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 1317-1330
    • Li, M.A.1
  • 75
    • 84868381086 scopus 로고    scopus 로고
    • A hyperactive transposase promotes persistent gene transfer of a piggyBac DNA transposon
    • Burnight E.R., et al. A hyperactive transposase promotes persistent gene transfer of a piggyBac DNA transposon. Mol. Ther. Nucleic Acids 2012, 1:e50.
    • (2012) Mol. Ther. Nucleic Acids , vol.1 , pp. e50
    • Burnight, E.R.1
  • 76
    • 0034623009 scopus 로고    scopus 로고
    • Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates
    • Izsvak Z., et al. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 2000, 302:93-102.
    • (2000) J. Mol. Biol. , vol.302 , pp. 93-102
    • Izsvak, Z.1
  • 77
    • 83755224329 scopus 로고    scopus 로고
    • Mobilization of giant piggyBac transposons in the mouse genome
    • Li M.A., et al. Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res. 2011, 39:e148.
    • (2011) Nucleic Acids Res. , vol.39 , pp. e148
    • Li, M.A.1
  • 78
    • 67349250885 scopus 로고    scopus 로고
    • Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates
    • Mates L., et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 2009, 41:753-761.
    • (2009) Nat. Genet. , vol.41 , pp. 753-761
    • Mates, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.