메뉴 건너뛰기




Volumn 7, Issue 8, 2015, Pages 4232-4246

Daily reservoir runoff forecasting method using artificial neural network based on quantum-behaved particle swarm optimization

Author keywords

Artificial neural network; Daily runoff; Hybrid forecast; Quantum behaved particle swarm optimization (QPSO); Reservoir forecasting

Indexed keywords

ELECTRIC POWER SYSTEM CONTROL; FAULT TOLERANCE; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); RAIN; RUNOFF;

EID: 84940398455     PISSN: None     EISSN: 20734441     Source Type: Journal    
DOI: 10.3390/w7084232     Document Type: Article
Times cited : (82)

References (33)
  • 2
    • 84939955777 scopus 로고    scopus 로고
    • Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
    • Wang, W.C.; Chau, K.W.; Xu, D.M.; Chen, X.Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 2015, 29, 1-21.
    • (2015) Water Resour. Manag. , vol.29 , pp. 1-21
    • Wang, W.C.1    Chau, K.W.2    Xu, D.M.3    Chen, X.Y.4
  • 3
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q.Y.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015-1031.
    • (1992) Water Resour. Res. , vol.28 , pp. 1015-1031
    • Duan, Q.Y.1    Sorooshian, S.2    Gupta, V.3
  • 4
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476, 433-441.
    • (2013) J. Hydrol. , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 6
    • 0026895285 scopus 로고
    • The Xinanjiang model applied in China
    • Zhao, R.J. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371-381.
    • (1992) J. Hydrol. , vol.135 , pp. 371-381
    • Zhao, R.J.1
  • 7
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration.
    • Cheng, C.T.; Ou, C.P.; Chau, K.W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. J. Hydrol. 2002, 268, 72-86.
    • (2002) J. Hydrol. , vol.268 , pp. 72-86
    • Cheng, C.T.1    Ou, C.P.2    Chau, K.W.3
  • 8
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W.C.; Chau, K.W.; Cheng, C.T.; Qiu, L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294-306.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 9
    • 77954958168 scopus 로고    scopus 로고
    • Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting
    • Lin, G.F.; Chen, G.R.; Huang, P.Y. Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting. Adv. Water Resour. 2010, 33, 887-898.
    • (2010) Adv. Water Resour. , vol.33 , pp. 887-898
    • Lin, G.F.1    Chen, G.R.2    Huang, P.Y.3
  • 10
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K.; Gupta, H.V.; Sorroshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31, 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorroshian, S.3
  • 11
    • 79956302151 scopus 로고    scopus 로고
    • Monthly rainfall-runoff modelling using artificial neural networks
    • Machado, F.; Mine, M.; Kaviski, E.; Fill, H. Monthly rainfall-runoff modelling using artificial neural networks. Hydrol. Sci. J. 2011, 56, 349-361.
    • (2011) Hydrol. Sci. J. , vol.56 , pp. 349-361
    • Machado, F.1    Mine, M.2    Kaviski, E.3    Fill, H.4
  • 12
    • 0028449781 scopus 로고
    • Optimal use of the SCE-UA global optimization method for calibrating watershed models
    • Duan, Q.Y.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265-284.
    • (1994) J. Hydrol. , vol.158 , pp. 265-284
    • Duan, Q.Y.1    Sorooshian, S.2    Gupta, V.K.3
  • 13
    • 0027558431 scopus 로고
    • Shuffled complex evolution approach for effective and efficient global minimization
    • Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501-521.
    • (1993) J. Optim. Theory Appl. , vol.76 , pp. 501-521
    • Duan, Q.Y.1    Gupta, V.K.2    Sorooshian, S.3
  • 14
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J.Y.; Cheng, C.T.; Chau, K.W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 15
    • 84870805164 scopus 로고    scopus 로고
    • Nonlinear regression in environmental sciences by support vector machines combined with evolutionary strategy
    • Lima, A.R.; Cannon, A.J.; Hsieh, W.W. Nonlinear regression in environmental sciences by support vector machines combined with evolutionary strategy. Comput. Geosci. 2013, 50, 136-144.
    • (2013) Comput. Geosci. , vol.50 , pp. 136-144
    • Lima, A.R.1    Cannon, A.J.2    Hsieh, W.W.3
  • 16
    • 84938686131 scopus 로고    scopus 로고
    • Subgrid parameterization of the soil moisture storage capacity for a distributed rainfall-runoff model
    • Guo, W.J.; Wang, C.H.; Zeng, X.M.; Ma, T.F.; Yang, H. Subgrid parameterization of the soil moisture storage capacity for a distributed rainfall-runoff model. Water 2015, 7, 2691-2706.
    • (2015) Water , vol.7 , pp. 2691-2706
    • Guo, W.J.1    Wang, C.H.2    Zeng, X.M.3    Ma, T.F.4    Yang, H.5
  • 17
    • 84920930447 scopus 로고    scopus 로고
    • Assessment of short term rainfall and stream flows in South Australia
    • Kamruzzaman, M.; Shahriar, M.S.; Beecham, S. Assessment of short term rainfall and stream flows in South Australia. Water 2014, 6, 3528-3544.
    • (2014) Water , vol.6 , pp. 3528-3544
    • Kamruzzaman, M.1    Shahriar, M.S.2    Beecham, S.3
  • 18
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtz River
    • Chau, K.W.; Wu, C.L.; Li, Y.S. Comparison of several flood forecasting models in Yangtz River. J. Hydrol. Eng. 2005, 10, 485-491.
    • (2005) J. Hydrol. Eng. , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 19
    • 80052028861 scopus 로고    scopus 로고
    • Optimizing neural networks for river flow forecasting evolutionary computation methods versus the Levenberg-Marquardt approach
    • Piotrowski, A.P.; Napiorkowski, J.J. Optimizing neural networks for river flow forecasting evolutionary computation methods versus the Levenberg-Marquardt approach. J. Hydrol. 2011, 407, 12-27.
    • (2011) J. Hydrol. , vol.407 , pp. 12-27
    • Piotrowski, A.P.1    Napiorkowski, J.J.2
  • 20
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River.
    • Chau, K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329, 363-367.
    • (2006) J. Hydrol. , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 21
    • 84929144928 scopus 로고    scopus 로고
    • Improved particle swarm optimization based artificial neural network for rainfall-runoff modeling
    • Asadnia, M.; Chua, L.H.C.; Qin, X.S.; Talei, A. Improved particle swarm optimization based artificial neural network for rainfall-runoff modeling. J. Hydrol. Eng. 2014, 19, 1320-1329.
    • (2014) J. Hydrol. Eng. , vol.19 , pp. 1320-1329
    • Asadnia, M.1    Chua, L.H.C.2    Qin, X.S.3    Talei, A.4
  • 22
    • 84902007521 scopus 로고    scopus 로고
    • Enhancing the predicting accuracy of the water stage using a physical-based model and an artificial neural network-genetic algorithm in a river system
    • Liu, W.C.; Chung, C.E. Enhancing the predicting accuracy of the water stage using a physical-based model and an artificial neural network-genetic algorithm in a river system. Water 2014, 6, 1642-1661.
    • (2014) Water , vol.6 , pp. 1642-1661
    • Liu, W.C.1    Chung, C.E.2
  • 23
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis
    • Wu, C.L.; Chau, K.W. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399, 394-409.
    • (2011) J. Hydrol. , vol.399 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 24
    • 70349765658 scopus 로고    scopus 로고
    • Combining single-value streamflow forecasts-A review and guidelines for selecting techniques.
    • Jeong, D.I.; Kim, Y.O. Combining single-value streamflow forecasts-A review and guidelines for selecting techniques. J. Hydrol. 2009, 377, 284-299.
    • (2009) J. Hydrol. , vol.377 , pp. 284-299
    • Jeong, D.I.1    Kim, Y.O.2
  • 25
    • 4344586511 scopus 로고    scopus 로고
    • Particle swarm optimization with particles having quantum behavior
    • Proceedings of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19-23 June
    • Sun, J.; Feng, B.; Xu, W.B. Particle swarm optimization with particles having quantum behavior. In Congress on Evolutionary Computation, 2004 (CEC2004), Proceedings of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19-23 June 2004; pp. 325-331.
    • (2004) Congress on Evolutionary Computation, 2004 (CEC2004) , pp. 325-331
    • Sun, J.1    Feng, B.2    Xu, W.B.3
  • 26
    • 77954230434 scopus 로고    scopus 로고
    • A review of quantum-behaved particle swarm optimization
    • Fang, W.; Sun, J.; Ding, Y.; Wu, X.; Xu, W. A review of quantum-behaved particle swarm optimization. IETE Tech. Rev. 2010, 27, 336-348.
    • (2010) IETE Tech. Rev. , vol.27 , pp. 336-348
    • Fang, W.1    Sun, J.2    Ding, Y.3    Wu, X.4    Xu, W.5
  • 27
    • 54449088017 scopus 로고    scopus 로고
    • An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position
    • Xi, M.; Sun, J.; Xu, W. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 2008, 205, 751-759.
    • (2008) Appl. Math. Comput. , vol.205 , pp. 751-759
    • Xi, M.1    Sun, J.2    Xu, W.3
  • 28
    • 84937807065 scopus 로고    scopus 로고
    • Improved quantum-behaved particle swarm optimization and its application in optimal operation of hydropower stations
    • in Chinese
    • Feng, Z.K.; Liao, S.L.; Niu, W.J.; Shen, J.J.; Cheng, C.T.; Li, Z.H. Improved quantum-behaved particle swarm optimization and its application in optimal operation of hydropower stations. Adv. Water Sci. 2015, 26, 413-422. (in Chinese)
    • (2015) Adv. Water Sci. , vol.26 , pp. 413-422
    • Feng, Z.K.1    Liao, S.L.2    Niu, W.J.3    Shen, J.J.4    Cheng, C.T.5    Li, Z.H.6
  • 29
    • 77249117129 scopus 로고    scopus 로고
    • Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization
    • Sun, C.; Lu, S. Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization. Expert Syst. Appl. 2010, 37, 4232-4241.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4232-4241
    • Sun, C.1    Lu, S.2
  • 31
    • 0042526087 scopus 로고    scopus 로고
    • Particle swarm optimization to solving the economic dispatch considering the generator constraints
    • Gaing, Z.L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Pow. Syst. 2003, 18, 1187-1195.
    • (2003) IEEE Trans. Pow. Syst. , vol.18 , pp. 1187-1195
    • Gaing, Z.L.1
  • 32
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58-73.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 33
    • 84892441792 scopus 로고    scopus 로고
    • Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting
    • Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowl. Based Syst. 2014, 56, 226-239.
    • (2014) Knowl. Based Syst. , vol.56 , pp. 226-239
    • Ren, C.1    An, N.2    Wang, J.3    Li, L.4    Hu, B.5    Shang, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.