메뉴 건너뛰기




Volumn 2, Issue , 2014, Pages 1057-1069

Memory efficient kernel approximation

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; MATRIX ALGEBRA; REGRESSION ANALYSIS; SCHEDULING ALGORITHMS; STATISTICAL TESTS;

EID: 84919905043     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (56)

References (27)
  • 1
    • 31844446681 scopus 로고    scopus 로고
    • Predictive low- rank decomposition for kernel methods
    • Bach, Francis R. and Jordan, Michael I. Predictive low- rank decomposition for kernel methods. In ICML, 2005.
    • (2005) ICML
    • Bach, F.R.1    Jordan, M.I.2
  • 3
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C. and Vapnik, V. Support-vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 29244453931 scopus 로고    scopus 로고
    • On the Nystrom method for approximating a Gram matrix for improved kernel- based learning
    • Drineas, P. and Mahoney, M. W. On the Nystrom method for approximating a Gram matrix for improved kernel- based learning. Journal of Machine Learning Research, 6:2153-2175, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 7
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Fine, S. and Scheinberg, K. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 8
    • 84897565618 scopus 로고    scopus 로고
    • Revisiting the Nystrom method for improved large-scale machine learning
    • Gittens, A. and Mahoney, M. W. Revisiting the Nystrom method for improved large-scale machine learning. In ICML, 2013.
    • (2013) ICML
    • Gittens, A.1    Mahoney, M.W.2
  • 9
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • Halko, N., Martinsson, P. G., and Tropp, J. A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011.
    • (2011) SIAM Review , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.A.3
  • 12
    • 84897549944 scopus 로고    scopus 로고
    • Fastfood - Approximating kernel expansions in loglinear time
    • Le, Q. V., Sarlos, T., and Smola, A. J. Fastfood - Approximating kernel expansions in loglinear time. In ICML, 2013.
    • (2013) ICML
    • Le, Q.V.1    Sarlos, T.2    Smola, A.J.3
  • 13
    • 77956549641 scopus 로고    scopus 로고
    • Making large-scale Nystrom approximation possible
    • Li, Mu, Kwok, James, T and Lu, Bao-Liang. Making large-scale Nystrom approximation possible. In ICML, 2010.
    • (2010) ICML
    • Kwok1    Li, M.2    James, T.3    Lu, B.-L.4
  • 14
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • Rahimi, A. and Recht, B. Random features for large-scale kernel machines. In NIPS, 2007.
    • (2007) NIPS
    • Rahimi, A.1    Recht, B.2
  • 15
    • 77953199346 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • Rahimi, A. and Recht, B. Weighted sums of random kitchen sinks: replacing minimization with randomization in learning. In NIPS, 2008.
    • (2008) NIPS
    • Rahimi, A.1    Recht, B.2
  • 16
    • 70450199207 scopus 로고    scopus 로고
    • Ridge regression learning algorithm in dual variables
    • Saunders, C., Gammerman, A., and Vovk, V. Ridge regression learning algorithm in dual variables. In ICML, 1998.
    • (1998) ICML
    • Saunders, C.1    Gammerman, A.2    Vovk, V.3
  • 17
    • 84864650291 scopus 로고    scopus 로고
    • Clustered low rank approximation of graphs in information science applications
    • Savas, B. and Dhillon, I. S. Clustered low rank approximation of graphs in information science applications. In SDM, 2011.
    • (2011) SDM
    • Savas, B.1    Dhillon, I.S.2
  • 20
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • Smola, A. J. and Scholkopf, B. Sparse greedy matrix approximation for machine learning. In ICML, 2000.
    • (2000) ICML
    • Smola, A.J.1    Scholkopf, B.2
  • 22
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing, 17(4), 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4
    • Von Luxburg, U.1
  • 23
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nystrom method to speed up kernel machines
    • Williams, Christopher and Seeger, M. Using the Nystrom method to speed up kernel machines. In NIPS, 2001.
    • (2001) NIPS
    • Williams, C.1    Seeger, M.2
  • 24
    • 84877740547 scopus 로고    scopus 로고
    • Nystrom method vs random Fourier features: A theoretical and empirical comparison
    • Yang, T, Li, Y.-F., Mahdavi, M, Jin, R and Zhou, Z.-H. Nystrom method vs random Fourier features: A theoretical and empirical comparison. In NIPS, 2012.
    • (2012) NIPS
    • Yang, T.1    Li, Y.-F.2    Mahdavi, M.3    Jin, R.4    Zhou, Z.-H.5
  • 25
    • 77957779140 scopus 로고    scopus 로고
    • Clustered Nystrom method for large scale manifold learning and dimension reduction
    • Zhang, K. and Kwok, J. T. Clustered Nystrom method for large scale manifold learning and dimension reduction. IEEE Trans. Neural Networks, 21 (10): 1576-1587, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.10 , pp. 1576-1587
    • Zhang, K.1    Kwok, J.T.2
  • 26
    • 56449087564 scopus 로고    scopus 로고
    • Improved Nystrom low rank approximation and error analysis
    • Zhang, K., Tsang, I. W., and Kwok, J. T. Improved Nystrom low rank approximation and error analysis. In ICML, 2008.
    • (2008) ICML
    • Zhang, K.1    Tsang, I.W.2    Kwok, J.T.3
  • 27
    • 84919807585 scopus 로고    scopus 로고
    • Scaling up kernel SVM on limited resources: A low-rank linearization approach
    • Zhang, K, Lan, L, Wang, Z., and Moerchen, F. Scaling up kernel SVM on limited resources: A low-rank linearization approach. In AISTATS, 2012.
    • (2012) AISTATS
    • Zhang, K.1    Lan, L.2    Wang, Z.3    Moerchen, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.