-
1
-
-
31844446681
-
Predictive low- rank decomposition for kernel methods
-
Bach, Francis R. and Jordan, Michael I. Predictive low- rank decomposition for kernel methods. In ICML, 2005.
-
(2005)
ICML
-
-
Bach, F.R.1
Jordan, M.I.2
-
3
-
-
34249753618
-
Support-vector networks
-
Cortes, C. and Vapnik, V. Support-vector networks. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
6
-
-
29244453931
-
On the Nystrom method for approximating a Gram matrix for improved kernel- based learning
-
Drineas, P. and Mahoney, M. W. On the Nystrom method for approximating a Gram matrix for improved kernel- based learning. Journal of Machine Learning Research, 6:2153-2175, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2153-2175
-
-
Drineas, P.1
Mahoney, M.W.2
-
7
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
Fine, S. and Scheinberg, K. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
8
-
-
84897565618
-
Revisiting the Nystrom method for improved large-scale machine learning
-
Gittens, A. and Mahoney, M. W. Revisiting the Nystrom method for improved large-scale machine learning. In ICML, 2013.
-
(2013)
ICML
-
-
Gittens, A.1
Mahoney, M.W.2
-
9
-
-
79960425522
-
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
-
Halko, N., Martinsson, P. G., and Tropp, J. A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011.
-
(2011)
SIAM Review
, vol.53
, Issue.2
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.A.3
-
11
-
-
84860672647
-
Sampling methods for the Nystrom method
-
Kumar, S., Mohri, M., and Talwalkar, A. Sampling methods for the Nystrom method. Journal of Machine Learning Research, 13:981-1006, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 981-1006
-
-
Kumar, S.1
Mohri, M.2
Talwalkar, A.3
-
12
-
-
84897549944
-
Fastfood - Approximating kernel expansions in loglinear time
-
Le, Q. V., Sarlos, T., and Smola, A. J. Fastfood - Approximating kernel expansions in loglinear time. In ICML, 2013.
-
(2013)
ICML
-
-
Le, Q.V.1
Sarlos, T.2
Smola, A.J.3
-
13
-
-
77956549641
-
Making large-scale Nystrom approximation possible
-
Li, Mu, Kwok, James, T and Lu, Bao-Liang. Making large-scale Nystrom approximation possible. In ICML, 2010.
-
(2010)
ICML
-
-
Kwok1
Li, M.2
James, T.3
Lu, B.-L.4
-
14
-
-
77953218689
-
Random features for large-scale kernel machines
-
Rahimi, A. and Recht, B. Random features for large-scale kernel machines. In NIPS, 2007.
-
(2007)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
15
-
-
77953199346
-
Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
-
Rahimi, A. and Recht, B. Weighted sums of random kitchen sinks: replacing minimization with randomization in learning. In NIPS, 2008.
-
(2008)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
16
-
-
70450199207
-
Ridge regression learning algorithm in dual variables
-
Saunders, C., Gammerman, A., and Vovk, V. Ridge regression learning algorithm in dual variables. In ICML, 1998.
-
(1998)
ICML
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
17
-
-
84864650291
-
Clustered low rank approximation of graphs in information science applications
-
Savas, B. and Dhillon, I. S. Clustered low rank approximation of graphs in information science applications. In SDM, 2011.
-
(2011)
SDM
-
-
Savas, B.1
Dhillon, I.S.2
-
20
-
-
0002493574
-
Sparse greedy matrix approximation for machine learning
-
Smola, A. J. and Scholkopf, B. Sparse greedy matrix approximation for machine learning. In ICML, 2000.
-
(2000)
ICML
-
-
Smola, A.J.1
Scholkopf, B.2
-
22
-
-
34548583274
-
A tutorial on spectral clustering
-
von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing, 17(4), 2007.
-
(2007)
Statistics and Computing
, vol.17
, Issue.4
-
-
Von Luxburg, U.1
-
23
-
-
84899010839
-
Using the Nystrom method to speed up kernel machines
-
Williams, Christopher and Seeger, M. Using the Nystrom method to speed up kernel machines. In NIPS, 2001.
-
(2001)
NIPS
-
-
Williams, C.1
Seeger, M.2
-
24
-
-
84877740547
-
Nystrom method vs random Fourier features: A theoretical and empirical comparison
-
Yang, T, Li, Y.-F., Mahdavi, M, Jin, R and Zhou, Z.-H. Nystrom method vs random Fourier features: A theoretical and empirical comparison. In NIPS, 2012.
-
(2012)
NIPS
-
-
Yang, T.1
Li, Y.-F.2
Mahdavi, M.3
Jin, R.4
Zhou, Z.-H.5
-
25
-
-
77957779140
-
Clustered Nystrom method for large scale manifold learning and dimension reduction
-
Zhang, K. and Kwok, J. T. Clustered Nystrom method for large scale manifold learning and dimension reduction. IEEE Trans. Neural Networks, 21 (10): 1576-1587, 2010.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.10
, pp. 1576-1587
-
-
Zhang, K.1
Kwok, J.T.2
-
26
-
-
56449087564
-
Improved Nystrom low rank approximation and error analysis
-
Zhang, K., Tsang, I. W., and Kwok, J. T. Improved Nystrom low rank approximation and error analysis. In ICML, 2008.
-
(2008)
ICML
-
-
Zhang, K.1
Tsang, I.W.2
Kwok, J.T.3
-
27
-
-
84919807585
-
Scaling up kernel SVM on limited resources: A low-rank linearization approach
-
Zhang, K, Lan, L, Wang, Z., and Moerchen, F. Scaling up kernel SVM on limited resources: A low-rank linearization approach. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Zhang, K.1
Lan, L.2
Wang, Z.3
Moerchen, F.4
|