-
3
-
-
0034826231
-
Spectral analysis of data
-
Y. Azar, A. Fiat, A. R. Karlin, F. McSherry, and J. Saia. Spectral analysis of data. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pages 619-626, 2001.
-
(2001)
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
, pp. 619-626
-
-
Azar, Y.1
Fiat, A.2
Karlin, A.R.3
McSherry, F.4
Saia, J.5
-
4
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6): 1373-1396, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
6
-
-
33947233031
-
Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering
-
Y. Bengio, J. F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet. Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. In Annual Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference, pages 177-184, 2004.
-
(2004)
Annual Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference
, pp. 177-184
-
-
Bengio, Y.1
Paiement, J.F.2
Vincent, P.3
Delalleau, O.4
Le Roux, N.5
Ouimet, M.6
-
7
-
-
0004151496
-
-
Springer-Verlag, New York
-
R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.
-
(1997)
Matrix Analysis
-
-
Bhatia, R.1
-
11
-
-
0037948870
-
Hessian eigenmaps: Locally linear embedding techniques for highdimensional data
-
D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques for highdimensional data. Proc. Natl. Acad. Sci. USA, 100(10):5591-5596, 2003.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, Issue.10
, pp. 5591-5596
-
-
Donoho, D.L.1
Grimes, C.2
-
12
-
-
0032800925
-
Clustering in large graphs and matrices
-
P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large graphs and matrices. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 291-299, 1999.
-
(1999)
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 291-299
-
-
Drineas, P.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
Vinay, V.5
-
15
-
-
24144491457
-
Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication
-
Technical Report YALEU/DCS/TR-1269, Yale University Department of Computer Science, New Haven, CT, February. Accepted for publication in the
-
P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication. Technical Report YALEU/DCS/TR-1269, Yale University Department of Computer Science, New Haven, CT, February 2004a. Accepted for publication in the SIAM Journal on Computing.
-
(2004)
SIAM Journal on Computing
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.W.3
-
16
-
-
20444450258
-
Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
-
Technical Report YALEU/DCS/TR-1270, Yale University Department of Computer Science, New Haven, CT, February. Accepted for publication in the
-
P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. Technical Report YALEU/DCS/TR-1270, Yale University Department of Computer Science, New Haven, CT, February 2004b. Accepted for publication in the SIAM Journal on Computing.
-
(2004)
SIAM Journal on Computing
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.W.3
-
17
-
-
24144499504
-
Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition
-
Technical Report YALEU/DCS/TR-1271, Yale University Department of Computer Science, New Haven, CT, February. Accepted for publication in the
-
P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition. Technical Report YALEU/DCS/TR-1271, Yale University Department of Computer Science, New Haven, CT, February 2004c. Accepted for publication in the SIAM Journal on Computing.
-
(2004)
SIAM Journal on Computing
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.W.3
-
18
-
-
24144451439
-
Sampling sub-problems of heterogeneous Max-cut problems and approximation algorithms
-
Yale University Department of Computer Science, New Haven, CT, April
-
P. Drineas, R. Kannan, and M. W. Mahoney. Sampling sub-problems of heterogeneous Max-Cut problems and approximation algorithms. Technical Report YALEU/DCS/TR-1283, Yale University Department of Computer Science, New Haven, CT, April 2004d.
-
(2004)
Technical Report
, vol.YALEU-DCS-TR-1283
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.W.3
-
21
-
-
26944490571
-
On the Nyström method for approximating a Gram matrix for improved kernel-based learning
-
Yale University Department of Computer Science, New Haven, CT, April
-
P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix for improved kernel-based learning. Technical Report YALEU/DCS/TR-1319, Yale University Department of Computer Science, New Haven, CT, April 2005b.
-
(2005)
Technical Report
, vol.YALEU-DCS-TR-1319
-
-
Drineas, P.1
Mahoney, M.W.2
-
22
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
23
-
-
0742286179
-
Spectral grouping using the Nyström method
-
C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):214-225, 2004.
-
(2004)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.26
, Issue.2
, pp. 214-225
-
-
Fowlkes, C.1
Belongie, S.2
Chung, F.3
Malik, J.4
-
26
-
-
0037790752
-
The maximum-volume concept in approximation by lowrank matrices
-
S. A. Goreinov and E. E. Tyrtyshnikov. The maximum-volume concept in approximation by lowrank matrices. Contemporary Mathematics, 280:47-51, 2001.
-
(2001)
Contemporary Mathematics
, vol.280
, pp. 47-51
-
-
Goreinov, S.A.1
Tyrtyshnikov, E.E.2
-
28
-
-
4344609668
-
A kernel view of the dimensionality reduction of manifolds
-
Max Planck Institute for Biological Cybernetics, July
-
J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimensionality reduction of manifolds. Technical Report TR-110, Max Planck Institute for Biological Cybernetics, July 2003.
-
(2003)
Technical Report
, vol.TR-110
-
-
Ham, J.1
Lee, D.D.2
Mika, S.3
Schölkopf, B.4
-
33
-
-
29244454088
-
Matrix approximation and projective clustering via iterative sampling
-
Massachusetts Institute of Technology, Cambridge, MA, March
-
L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering via iterative sampling. Technical Report MIT-LCS-TR-983, Massachusetts Institute of Technology, Cambridge, MA, March 2005.
-
(2005)
Technical Report
, vol.MIT-LCS-TR-983
-
-
Rademacher, L.1
Vempala, S.2
Wang, G.3
-
34
-
-
0034704222
-
Nonlinear dimensionality reduction by local linear embedding
-
S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by local linear embedding. Science, 290:2323-2326, 2000.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
35
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
38
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
|