메뉴 건너뛰기




Volumn 21, Issue 10, 2010, Pages 1576-1587

Clustered Nyström method for large scale manifold learning and dimension reduction

Author keywords

Dimension reduction; eigenvalue decomposition; kernel matrix; low rank approximation; manifold learning; Nystrm method; sampling

Indexed keywords

APPROXIMATION THEORY; CLUSTERING ALGORITHMS; EIGENVALUES AND EIGENFUNCTIONS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATRIX ALGEBRA; PRINCIPAL COMPONENT ANALYSIS; REDUCTION; SAMPLING;

EID: 77957779140     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2064786     Document Type: Article
Times cited : (210)

References (51)
  • 3
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Jul
    • B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem", Neural Comput., vol. 10, no. 5, pp. 1299-1319, Jul. 1998.
    • (1998) Neural. Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 4
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding", Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 5
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction", Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 6
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Cambridge, MA: MIT Press
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering", in Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2002, pp. 585-591.
    • (2002) Advances in Neural. Information Processing Systems , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 7
    • 34548793847 scopus 로고    scopus 로고
    • Linearized cluster assignment via spectral ordering
    • Banff, AB, Canada, Jul
    • C. Ding and X. He, "Linearized cluster assignment via spectral ordering", in Proc. 21st Int. Conf. Mach. Learn., Banff, AB, Canada, Jul. 2004, pp. 30-37.
    • (2004) Proc. 21st Int. Conf. Mach. Learn. , pp. 30-37
    • Ding, C.1    He, X.2
  • 10
    • 72049092043 scopus 로고    scopus 로고
    • Seeding the kernels in graphs: Toward multi-resolution community analysis
    • Nov
    • J. Zhang, K. Zhang, X. Xu, C. K. Tse, and M. Small, "Seeding the kernels in graphs: Toward multi-resolution community analysis", New J. Phys., vol. 11, p. 113003, Nov. 2009.
    • (2009) New J. Phys. , vol.11 , pp. 113003
    • Zhang, J.1    Zhang, K.2    Xu, X.3    Tse, C.K.4    Small, M.5
  • 11
    • 0039722607 scopus 로고    scopus 로고
    • The effect of the input density distribution on kernel-based classifiers
    • Stanford, CA, Jun
    • C. K. I. Williams and M. Seeger, "The effect of the input density distribution on kernel-based classifiers", in Proc. 17th Int. Conf. Mach. Learn., Stanford, CA, Jun. 2000, pp. 1159-1166.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 1159-1166
    • Williams, C.K.I.1    Seeger, M.2
  • 12
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Dec
    • S. Fine and K. Scheinberg, "Efficient SVM training using low-rank kernel representations", J. Mach. Learn. Res., vol. 2, pp. 243-264, Dec. 2001.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 14
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Jun
    • J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers", Neural Process. Lett., vol. 9, no. 3, pp. 293-300, Jun. 1999.
    • (1999) Neural. Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 15
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • Cambridge, MA: MIT Press
    • C. K. I. Williams and M. Seeger, "Using the Nyström method to speed up kernel machines", in Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press, 2001, pp. 682-688.
    • (2001) Advances in Neural. Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2
  • 18
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug
    • J. Shi and J. Malik, "Normalized cuts and image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 19
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • Stanford, CA, Jun
    • A. J. Smola and B. Schölkopf, "Sparse greedy matrix approximation for machine learning", in Proc. 17th Int. Conf. Mach. Learn., Stanford, CA, Jun. 2000, pp. 911-918.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 911-918
    • Smola, A.J.1    Schölkopf, B.2
  • 20
    • 71149094641 scopus 로고    scopus 로고
    • On sampling-based approximate spectral decomposition
    • Montreal, QC, Canada, Jun
    • S. Kumar, M. Mohri, and A. Talwalkar, "On sampling-based approximate spectral decomposition", in Proc. Int. Conf. Mach. Learn., Montreal, QC, Canada, Jun. 2009, pp. 585-592.
    • (2009) Proc. Int. Conf. Mach. Learn. , pp. 585-592
    • Kumar, S.1    Mohri, M.2    Talwalkar, A.3
  • 22
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Jul
    • F. R. Bach and M. I. Jordan, "Kernel independent component analysis", J. Mach. Learn. Res., vol. 3, pp. 1-48, Jul. 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 23
    • 31844446681 scopus 로고    scopus 로고
    • Predictive low-rank decomposition for kernel methods
    • Bonn, Germany, Aug
    • F. R. Bach and M. I. Jordan, "Predictive low-rank decomposition for kernel methods", in Proc. 22nd Int. Conf. Mach. Learn., Bonn, Germany, Aug. 2005, pp. 33-40.
    • (2005) Proc. 22nd Int. Conf. Mach. Learn. , pp. 33-40
    • Bach, F.R.1    Jordan, M.I.2
  • 24
    • 0034830284 scopus 로고    scopus 로고
    • Fast computation of low rank matrix approximations
    • Hersonissos, Greece, Jul
    • D. Achlioptas and F. McSherry, "Fast computation of low rank matrix approximations", in Proc. 33rd Annu. ACM Symp. Theory Comput., Hersonissos, Greece, Jul. 2001, pp. 611-618.
    • (2001) Proc. 33rd Annu. ACM Symp. Theory Comput. , pp. 611-618
    • Achlioptas, D.1    McSherry, F.2
  • 25
    • 35248881205 scopus 로고    scopus 로고
    • An experimental evaluation of a Monte-Carlo algorithm for singular value decomposition
    • Nicosia, Cyprus
    • P. Drineas, E. Drinea, and P. S. Huggins, "An experimental evaluation of a Monte-Carlo algorithm for singular value decomposition", in Proc. 8th Panhellenic Conf. Informat., Nicosia, Cyprus, 2003, pp. 279-296.
    • (2003) Proc. 8th Panhellenic Conf. Informat. , pp. 279-296
    • Drineas, P.1    Drinea, E.2    Huggins, P.S.3
  • 26
    • 29244453931 scopus 로고    scopus 로고
    • On the Nyström method for approximating a Gram matrix for improved kernel-based learning
    • Dec
    • P. Drineas and M. W. Mahoney, "On the Nyström method for approximating a Gram matrix for improved kernel-based learning", J. Mach. Learn. Res., vol. 6, pp. 2153-2175, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 27
    • 0032308232 scopus 로고    scopus 로고
    • Fast Monte-Carlo algorithms for finding low-rank approximations
    • Palo Alto, CA, Nov
    • A. Frieze, R. Kannan, and S. Vempala, "Fast Monte-Carlo algorithms for finding low-rank approximations", in Proc. 39th Annu. Symp. Found. Comput. Sci., Palo Alto, CA, Nov. 1998, pp. 370-378.
    • (1998) Proc. 39th Annu. Symp. Found. Comput. Sci. , pp. 370-378
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 29
    • 84862616884 scopus 로고    scopus 로고
    • Fastmap, metricmap, and landmark MDS are all Nyström algorithms
    • Barbados, Jan
    • J. C. Platt, "Fastmap, metricmap, and landmark MDS are all Nyström algorithms", in Proc. 10th Int. Workshop Artif. Intell. Statist., Barbados, Jan. 2005, pp. 261-268.
    • (2005) Proc. 10th Int. Workshop Artif. Intell. Statist. , pp. 261-268
    • Platt, J.C.1
  • 30
    • 84899009769 scopus 로고    scopus 로고
    • Global vs. local methods in nonlinear dimensionality reduction
    • Cambridge, MA: MIT Press
    • V. de Silva and J. B. Tenenbaum, "Global vs. local methods in nonlinear dimensionality reduction", in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2003, pp. 705-712.
    • (2003) Advances in Neural. Information Processing Systems , pp. 705-712
    • De Silva, V.1    Tenenbaum, J.B.2
  • 33
    • 70049106797 scopus 로고    scopus 로고
    • Prototype vector machine for large scale semi-supervised learning
    • Montreal, QC, Canada, Jun
    • K. Zhang, J. T. Kwok, and B. Parvin, "Prototype vector machine for large scale semi-supervised learning", in Proc. 26th Annu. Int. Conf. Mach. Learn., Montreal, QC, Canada, Jun. 2009, pp. 1233-1240.
    • (2009) Proc. 26th Annu. Int. Conf. Mach. Learn. , pp. 1233-1240
    • Zhang, K.1    Kwok, J.T.2    Parvin, B.3
  • 35
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press
    • G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 38
    • 77956549641 scopus 로고    scopus 로고
    • Making large-scale Nyström approximation possible
    • Haifa, Israel, Jun
    • M. Li, J. T. Kwok, and B.-L. Lu, "Making large-scale Nyström approximation possible", in Proc. Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010, pp. 1-8.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 1-8
    • Li, M.1    Kwok, J.T.2    Lu, B.-L.3
  • 39
    • 34250777051 scopus 로고    scopus 로고
    • Block-quantized kernel matrix for fast spectral embedding
    • Pittsburgh, PA, Jun
    • K. Zhang and J. T. Kwok, "Block-quantized kernel matrix for fast spectral embedding", in Proc. 23rd Int. Conf. Mach. Learn., Pittsburgh, PA, Jun. 2006, pp. 1097-1104.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 1097-1104
    • Zhang, K.1    Kwok, J.T.2
  • 40
    • 59149093832 scopus 로고    scopus 로고
    • Density-weighted Nyström method for computing large kernel eigensystems
    • Jan
    • K. Zhang and J. T. Kwok, "Density-weighted Nyström method for computing large kernel eigensystems", Neural Comput., vol. 21, no. 1, pp. 121-146, Jan. 2009.
    • (2009) Neural. Comput. , vol.21 , Issue.1 , pp. 121-146
    • Zhang, K.1    Kwok, J.T.2
  • 41
    • 33751075906 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
    • DOI 10.1137/S0097539704442696
    • P. Drineas, R. Kannan, and M. W. Mahoney, "Fast Monte-Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix", SIAM J. Comput., vol. 36, no. 1, pp. 158-183, 2006. (Pubitemid 46374022)
    • (2006) SIAM Journal on Computing , vol.36 , Issue.1 , pp. 158-183
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 44
    • 0002738562 scopus 로고    scopus 로고
    • Accelerating exact k-means algorithms with geometric reasoning
    • San Diego, CA, Aug
    • D. Pelleg and A. Moore, "Accelerating exact k-means algorithms with geometric reasoning", in Proc. 5th Int. Conf. Knowl. Discovery Data Mining, San Diego, CA, Aug. 1999, pp. 277-281.
    • (1999) Proc. 5th Int. Conf. Knowl. Discovery Data Mining , pp. 277-281
    • Pelleg, D.1    Moore, A.2
  • 45
    • 1942485278 scopus 로고    scopus 로고
    • Using the triangle inequality to accelerate k-means
    • Washington D. C., Aug
    • E. Elkan, "Using the triangle inequality to accelerate k-means", in Proc. 21th Int. Conf. Mach. Learn., Washington D. C., Aug. 2003, pp. 147-153.
    • (2003) Proc. 21th Int. Conf. Mach. Learn. , pp. 147-153
    • Elkan, E.1
  • 46
    • 0030834989 scopus 로고    scopus 로고
    • Modified k-means algorithm for vector quantizer design
    • Jan
    • D. Lee, S. Baek, and K. Sung, "Modified k-means algorithm for vector quantizer design", IEEE Signal Process. Lett., vol. 4, no. 1, pp. 2-4, Jan. 1997.
    • (1997) IEEE Signal Process. Lett. , vol.4 , Issue.1 , pp. 2-4
    • Lee, D.1    Baek, S.2    Sung, K.3
  • 47
    • 0343586025 scopus 로고    scopus 로고
    • A data-clustering algorithm on distributed memory multiprocessors
    • Berlin, Germany: Springer-Verlag
    • I. S. Dhillon and D. S. Modha, "A data-clustering algorithm on distributed memory multiprocessors", in Large-Scale Parallel Data Mining. Berlin, Germany: Springer-Verlag, 2000, pp. 245-260.
    • (2000) Large-Scale Parallel Data Mining , pp. 245-260
    • Dhillon, I.S.1    Modha, D.S.2
  • 48
    • 56449094193 scopus 로고    scopus 로고
    • Sparse multiscale Gaussian process regression
    • Helsinki, Finland, Jun
    • C. Walder, K. I. Kim, and B. Schölkopf, "Sparse multiscale Gaussian process regression", in Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, Jun. 2008, pp. 1112-1119.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 1112-1119
    • Walder, C.1    Kim, K.I.2    Schölkopf, B.3
  • 49
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • Haifa, Israel, Jun
    • W. Liu, J. He, and S.-F. Chang, "Large graph construction for scalable semi-supervised learning", in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010, pp. 1-8.
    • (2010) Proc. 27th Int. Conf. Mach. Learn. , pp. 1-8
    • Liu, W.1    He, J.2    Chang, S.-F.3
  • 50
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen, "On estimation of a probability density function and mode", Ann. Math. Statist., vol. 33, no. 3, pp. 1065-1076, 1962.
    • (1962) Ann. Math. Statist. , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 51
    • 24644458753 scopus 로고    scopus 로고
    • Applying neighborhood consistency for fast clustering and kernel density estimation
    • San Diego, CA, Jun
    • K. Zhang, M. Tang, and J. T. Kwok, "Applying neighborhood consistency for fast clustering and kernel density estimation", in Proc. Int. Conf. Comput. Vis. Pattern Recognit., San Diego, CA, Jun. 2005. pp. 1001-1007.
    • (2005) Proc. Int. Conf. Comput. Vis. Pattern Recognit. , pp. 1001-1007
    • Zhang, K.1    Tang, M.2    Kwok, J.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.