-
4
-
-
70350688128
-
Numerical linear algebra in the streaming model
-
K.L. Clarkson and D.P. Woodruff. Numerical linear algebra in the streaming model. In Proc. 41st STOC, pages 205-214, 2009.
-
(2009)
Proc. 41st STOC
, pp. 205-214
-
-
Clarkson, K.L.1
Woodruff, D.P.2
-
5
-
-
78751516882
-
Efficient volume sampling for row/column subset selection
-
A. Deshpande and L. Rademacher. Efficient volume sampling for row/column subset selection. In Proc 42th STOC, pages 329-338, 2010.
-
(2010)
Proc 42th STOC
, pp. 329-338
-
-
Deshpande, A.1
Rademacher, L.2
-
6
-
-
35448929865
-
Sampling-based dimension reduction for subspace approximation
-
A. Deshpande and K. R. Varadarajan. Sampling-based dimension reduction for subspace approximation. In Proc. 39th STOC, pages 641-650, 2007.
-
(2007)
Proc. 39th STOC
, pp. 641-650
-
-
Deshpande, A.1
Varadarajan, K.R.2
-
7
-
-
51849141693
-
Adaptive sampling and fast low-rank matrix approximation
-
A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix approximation. In RANDOM - APPROX, 2006.
-
(2006)
Random - APPROX
-
-
Deshpande, A.1
Vempala, S.2
-
8
-
-
45849092005
-
Matrix approximation and projective clustering via volume sampling
-
Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation and projective clustering via volume sampling. Theory of Computing, 2(12):225-247, 2006.
-
(2006)
Theory of Computing
, vol.2
, Issue.12
, pp. 225-247
-
-
Deshpande, A.1
Rademacher, L.2
Vempala, S.3
Wang, G.4
-
9
-
-
0032800925
-
Clustering in large graphs and matrices
-
P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large graphs and matrices. In Proc. 10th SODA, pages 291-299, 1999.
-
(1999)
Proc. 10th SODA
, pp. 291-299
-
-
Drineas, P.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
Vinay, V.5
-
12
-
-
84863310811
-
A unified framework for approximating and clustering data
-
D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In Proc. 43rd STOC, 2011.
-
Proc. 43rd STOC, 2011
-
-
Feldman, D.1
Langberg, M.2
-
13
-
-
77951676610
-
Coresets and sketches for high dimensional subspace approximation problems
-
D. Feldman, M. Monemizadeh, C. Sohler, and D. Woodruf. Coresets and sketches for high dimensional subspace approximation problems. In Proc. 21st SODA, pages 630-649, 2010.
-
(2010)
Proc. 21st SODA
, pp. 630-649
-
-
Feldman, D.1
Monemizadeh, M.2
Sohler, C.3
Woodruf, D.4
-
14
-
-
0032308232
-
Fast Monte-Carlo algorithms for finding low-rank approximations
-
A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank approximations. In Proc. 39th FOCS, pages 370-378, 1998.
-
(1998)
Proc. 39th FOCS
, pp. 370-378
-
-
Frieze, A.1
Kannan, R.2
Vempala, S.3
-
15
-
-
0000924593
-
Numerical methods for solving linear least squares problems
-
G. Golub. Numerical methods for solving linear least squares problems. Numerische Mathematik, 7:206-216, 1965.
-
(1965)
Numerische Mathematik
, vol.7
, pp. 206-216
-
-
Golub, G.1
-
16
-
-
0003216822
-
Efficient algorithms for computing a strong rank-revealing QR factorization
-
M. Gu and S.C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM Journal on Scientific Computing, 17:848-869, 1996. (Pubitemid 126621180)
-
(1996)
SIAM Journal of Scientific Computing
, vol.17
, Issue.4
, pp. 848-869
-
-
Gu, M.1
Eisenstat, S.C.2
-
18
-
-
79960425522
-
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
-
N. Halko, P.G. Martinsson, and J.A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 2011.
-
(2011)
SIAM Review
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.A.3
-
19
-
-
38049173092
-
Randomized algorithms for the low-rank approximation of matrices
-
E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert. Randomized algorithms for the low-rank approximation of matrices. Proceedings of the National Academy of Sciences, 104(51):20167-20172, 2007.
-
(2007)
Proceedings of the National Academy of Sciences
, vol.104
, Issue.51
, pp. 20167-20172
-
-
Liberty, E.1
Woolfe, F.2
Martinsson, P.G.3
Rokhlin, V.4
Tygert, M.5
-
20
-
-
58849086813
-
CUR matrix decompositions for improved data analysis
-
M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved data analysis. In Proc. PNAS, 106:697-702, 2009.
-
(2009)
Proc. PNAS
, vol.106
, pp. 697-702
-
-
Mahoney, M.W.1
Drineas, P.2
-
21
-
-
72449140504
-
A randomized algorithm for principal component analysis
-
V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component analysis. SIAM Journal on Matrix Analysis and Applications, 31(3):1100-1124, 2009.
-
(2009)
SIAM Journal on Matrix Analysis and Applications
, vol.31
, Issue.3
, pp. 1100-1124
-
-
Rokhlin, V.1
Szlam, A.2
Tygert, M.3
-
22
-
-
35348901208
-
Improved approximation algorithms for large matrices via random projections
-
T. Sarlos. Improved approximation algorithms for large matrices via random projections. In Proc. 47th FOCS, pages 143-152, 2006.
-
(2006)
Proc. 47th FOCS
, pp. 143-152
-
-
Sarlos, T.1
-
24
-
-
84863322097
-
-
arXiv report: arXiv:1103.2793v1
-
A. Zouzias. arXiv report: arXiv:1103.2793v1, http://arxiv.org/abs/1103. 2793.
-
-
-
Zouzias, A.1
|