메뉴 건너뛰기




Volumn , Issue , 2011, Pages 305-314

Near optimal column-based matrix reconstruction

Author keywords

approximate SVD; low rank matrix approximation; spectral sparsification; subset selection; SVD

Indexed keywords

ASYMPTOTICALLY OPTIMAL; DETERMINISTIC ALGORITHMS; FROBENIUS NORM; LOW-RANK MATRICES; ORTHONORMAL; SPARSE REPRESENTATION; SPARSIFICATION; SPECTRAL NORMS; SUBSET SELECTION; SVD-LIKE DECOMPOSITION;

EID: 84863303500     PISSN: 02725428     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FOCS.2011.21     Document Type: Conference Paper
Times cited : (69)

References (24)
  • 4
    • 70350688128 scopus 로고    scopus 로고
    • Numerical linear algebra in the streaming model
    • K.L. Clarkson and D.P. Woodruff. Numerical linear algebra in the streaming model. In Proc. 41st STOC, pages 205-214, 2009.
    • (2009) Proc. 41st STOC , pp. 205-214
    • Clarkson, K.L.1    Woodruff, D.P.2
  • 5
    • 78751516882 scopus 로고    scopus 로고
    • Efficient volume sampling for row/column subset selection
    • A. Deshpande and L. Rademacher. Efficient volume sampling for row/column subset selection. In Proc 42th STOC, pages 329-338, 2010.
    • (2010) Proc 42th STOC , pp. 329-338
    • Deshpande, A.1    Rademacher, L.2
  • 6
    • 35448929865 scopus 로고    scopus 로고
    • Sampling-based dimension reduction for subspace approximation
    • A. Deshpande and K. R. Varadarajan. Sampling-based dimension reduction for subspace approximation. In Proc. 39th STOC, pages 641-650, 2007.
    • (2007) Proc. 39th STOC , pp. 641-650
    • Deshpande, A.1    Varadarajan, K.R.2
  • 7
    • 51849141693 scopus 로고    scopus 로고
    • Adaptive sampling and fast low-rank matrix approximation
    • A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix approximation. In RANDOM - APPROX, 2006.
    • (2006) Random - APPROX
    • Deshpande, A.1    Vempala, S.2
  • 8
    • 45849092005 scopus 로고    scopus 로고
    • Matrix approximation and projective clustering via volume sampling
    • Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation and projective clustering via volume sampling. Theory of Computing, 2(12):225-247, 2006.
    • (2006) Theory of Computing , vol.2 , Issue.12 , pp. 225-247
    • Deshpande, A.1    Rademacher, L.2    Vempala, S.3    Wang, G.4
  • 12
    • 84863310811 scopus 로고    scopus 로고
    • A unified framework for approximating and clustering data
    • D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In Proc. 43rd STOC, 2011.
    • Proc. 43rd STOC, 2011
    • Feldman, D.1    Langberg, M.2
  • 13
    • 77951676610 scopus 로고    scopus 로고
    • Coresets and sketches for high dimensional subspace approximation problems
    • D. Feldman, M. Monemizadeh, C. Sohler, and D. Woodruf. Coresets and sketches for high dimensional subspace approximation problems. In Proc. 21st SODA, pages 630-649, 2010.
    • (2010) Proc. 21st SODA , pp. 630-649
    • Feldman, D.1    Monemizadeh, M.2    Sohler, C.3    Woodruf, D.4
  • 14
    • 0032308232 scopus 로고    scopus 로고
    • Fast Monte-Carlo algorithms for finding low-rank approximations
    • A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank approximations. In Proc. 39th FOCS, pages 370-378, 1998.
    • (1998) Proc. 39th FOCS , pp. 370-378
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 15
    • 0000924593 scopus 로고
    • Numerical methods for solving linear least squares problems
    • G. Golub. Numerical methods for solving linear least squares problems. Numerische Mathematik, 7:206-216, 1965.
    • (1965) Numerische Mathematik , vol.7 , pp. 206-216
    • Golub, G.1
  • 16
    • 0003216822 scopus 로고    scopus 로고
    • Efficient algorithms for computing a strong rank-revealing QR factorization
    • M. Gu and S.C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM Journal on Scientific Computing, 17:848-869, 1996. (Pubitemid 126621180)
    • (1996) SIAM Journal of Scientific Computing , vol.17 , Issue.4 , pp. 848-869
    • Gu, M.1    Eisenstat, S.C.2
  • 18
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • N. Halko, P.G. Martinsson, and J.A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 2011.
    • (2011) SIAM Review
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.A.3
  • 20
    • 58849086813 scopus 로고    scopus 로고
    • CUR matrix decompositions for improved data analysis
    • M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved data analysis. In Proc. PNAS, 106:697-702, 2009.
    • (2009) Proc. PNAS , vol.106 , pp. 697-702
    • Mahoney, M.W.1    Drineas, P.2
  • 22
    • 35348901208 scopus 로고    scopus 로고
    • Improved approximation algorithms for large matrices via random projections
    • T. Sarlos. Improved approximation algorithms for large matrices via random projections. In Proc. 47th FOCS, pages 143-152, 2006.
    • (2006) Proc. 47th FOCS , pp. 143-152
    • Sarlos, T.1
  • 23
    • 84969244615 scopus 로고    scopus 로고
    • Efficient subspace approximation algorithms
    • N. D. Shyamalkumar and K. R. Varadarajan. Efficient subspace approximation algorithms. In Proc. 18th SODA, pages 532-540, 2007.
    • (2007) Proc. 18th SODA , pp. 532-540
    • Shyamalkumar, N.D.1    Varadarajan, K.R.2
  • 24
    • 84863322097 scopus 로고    scopus 로고
    • arXiv report: arXiv:1103.2793v1
    • A. Zouzias. arXiv report: arXiv:1103.2793v1, http://arxiv.org/abs/1103. 2793.
    • Zouzias, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.