-
2
-
-
34547275841
-
Future trends in data mining
-
H.-P. Kriegel, K. Borgwardt, P. Kröger, A. Pryakhin, M. Schubert, and A. Zimek Future trends in data mining Data Mining and Knowledge Discovery 15 2007 87 97
-
(2007)
Data Mining and Knowledge Discovery
, vol.15
, pp. 87-97
-
-
Kriegel, H.-P.1
Borgwardt, K.2
Kröger, P.3
Pryakhin, A.4
Schubert, M.5
Zimek, A.6
-
3
-
-
78651375098
-
A survey of hierarchical classification across different application domains
-
C. Silla, and A. Freitas A survey of hierarchical classification across different application domains Data Mining and Knowledge Discovery 22 1-2 2011 31 72
-
(2011)
Data Mining and Knowledge Discovery
, vol.22
, Issue.12
, pp. 31-72
-
-
Silla, C.1
Freitas, A.2
-
4
-
-
36849072723
-
-
The MIT Press
-
G.H. Bakir, T. Hofmann, B. Schölkopf, A.J. Smola, B. Taskar, S.V.N. Vishwanathan, Predicting Structured Data, Neural Information Processing, The MIT Press, 2007.
-
(2007)
Predicting Structured Data, Neural Information Processing
-
-
Bakir, G.H.1
Hofmann, T.2
Schölkopf, B.3
Smola, A.J.4
Taskar, B.5
Vishwanathan, S.V.N.6
-
5
-
-
0002343269
-
Top-down induction of clustering trees
-
Morgan Kaufmann
-
H. Blockeel, L.D. Raedt, J. Ramon, Top-down induction of clustering trees, in: Proceedings of the 15th International Conference on Machine Learning, Morgan Kaufmann, 1998, pp. 55-63.
-
(1998)
Proceedings of the 15th International Conference on Machine Learning
, pp. 55-63
-
-
Blockeel, H.1
Raedt, L.D.2
Ramon, J.3
-
6
-
-
33745775676
-
Constraint based induction of multi-objective regression trees
-
Springer
-
J. Struyf, S. Džeroski, Constraint based induction of multi-objective regression trees, in: Proceedings of the 4th International Workshop on Knowledge Discovery in Inductive Databases KDID, Lecture Notes in Computer Science, vol. 3933, Springer, 2006, pp. 222-233.
-
(2006)
Proceedings of the 4th International Workshop on Knowledge Discovery in Inductive Databases KDID, Lecture Notes in Computer Science
, vol.3933
, pp. 222-233
-
-
J. Struyf1
-
7
-
-
38049132551
-
Ensembles of multi-objective decision trees
-
Springer
-
D. Kocev, C. Vens, J. Struyf, S. Džeroski, Ensembles of multi-objective decision trees, in: ECML '07: Proceedings of the 18th European Conference on Machine Learning, Lecture Notes in Computer Science, vol. 4701, Springer, 2007, pp. 624-631.
-
(2007)
ECML '07: Proceedings of the 18th European Conference on Machine Learning, Lecture Notes in Computer Science
, vol.4701
, pp. 624-631
-
-
D. Kocev1
-
8
-
-
52949141834
-
Decision trees for hierarchical multi-label classification
-
C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel Decision trees for hierarchical multi-label classification Machine Learning 73 2 2008 185 214
-
(2008)
Machine Learning
, vol.73
, Issue.2
, pp. 185-214
-
-
Vens, C.1
Struyf, J.2
Schietgat, L.3
Džeroski, S.4
Blockeel, H.5
-
9
-
-
77949701475
-
Finding explained groups of time-course gene expression profiles with predictive clustering trees
-
I. Slavkov, V. Gjorgjioski, J. Struyf, and S. Džeroski Finding explained groups of time-course gene expression profiles with predictive clustering trees Molecular Biosystems 6 4 2010 729 740
-
(2010)
Molecular Biosystems
, vol.6
, Issue.4
, pp. 729-740
-
-
Slavkov, I.1
Gjorgjioski, V.2
Struyf, J.3
Džeroski, S.4
-
11
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
13
-
-
0032645080
-
An empirical comparison of voting classification algorithms bagging, boosting, and variants
-
E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms bagging, boosting, and variants Machine Learning 36 1 1999 105 139
-
(1999)
Machine Learning
, vol.36
, Issue.1
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
14
-
-
33750303563
-
Decision trees for hierarchical multilabel classification: A case study in functional genomics
-
Springer
-
H. Blockeel, L. Schietgat, J. Struyf, S. Džeroski, A. Clare, Decision trees for hierarchical multilabel classification: a case study in functional genomics, in: Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science, vol. 4213, Springer, 2006, pp. 18-29.
-
(2006)
Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science
, vol.4213
, pp. 18-29
-
-
H. Blockeel1
-
16
-
-
77958064179
-
Mining data with random forests a survey and results of new tests
-
A. Verikas, A. Gelzinis, and M. Bacauskiene Mining data with random forests a survey and results of new tests Pattern Recognition 44 2 2011 330 349
-
(2011)
Pattern Recognition
, vol.44
, Issue.2
, pp. 330-349
-
-
Verikas, A.1
Gelzinis, A.2
Bacauskiene, M.3
-
17
-
-
77349119213
-
Predicting gene function using hierarchical multi-label decision tree ensembles
-
L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev, and S. Džeroski Predicting gene function using hierarchical multi-label decision tree ensembles BMC Bioinformatics 11 2 2010 1 14
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.2
, pp. 1-14
-
-
Schietgat, L.1
Vens, C.2
Struyf, J.3
Blockeel, H.4
Kocev, D.5
Džeroski, S.6
-
18
-
-
38449083520
-
Analysis of time series data with predictive clustering trees
-
KDID 2006, Revised Selected and Invited Papers, Lecture Notes in Computer Science Springer
-
S. Džeroski, V. Gjorgjioski, I. Slavkov, J. Struyf, Analysis of time series data with predictive clustering trees, in: Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Revised Selected and Invited Papers, Lecture Notes in Computer Science, vol. 4747, Springer, 2007, pp. 63-80.
-
(2007)
Knowledge Discovery in Inductive Databases, 5th International Workshop
, vol.4747
, pp. 63-80
-
-
S. Džeroski1
-
19
-
-
28444472696
-
Using multi-objective classification to model communities of soil
-
D. Demšar, S. Džeroski, T. Larsen, J. Struyf, J. Axelsen, M. Bruns-Pedersen, and P.H. Krogh Using multi-objective classification to model communities of soil Ecological Modelling 191 1 2006 131 143
-
(2006)
Ecological Modelling
, vol.191
, Issue.1
, pp. 131-143
-
-
Demšar, D.1
Džeroski, S.2
Larsen, T.3
Struyf, J.4
Axelsen, J.5
Bruns-Pedersen, M.6
Krogh, P.H.7
-
21
-
-
0003914835
-
-
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
-
P. Langley, Elements of Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.
-
(1996)
Elements of Machine Learning
-
-
Langley, P.1
-
24
-
-
25844463253
-
-
Ph.D. Thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK
-
A. Clare, Machine Learning and Data Mining for Yeast Functional Genomics, Ph.D. Thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK, 2003.
-
(2003)
Machine Learning and Data Mining for Yeast Functional Genomics
-
-
Clare, A.1
-
26
-
-
24044547645
-
Controlling the diversity in classifier ensembles through a measure of agreement
-
H. Zouari, L. Heutte, and Y. Lecourtier Controlling the diversity in classifier ensembles through a measure of agreement Pattern Recognition 38 11 2005 2195 2199
-
(2005)
Pattern Recognition
, vol.38
, Issue.11
, pp. 2195-2199
-
-
Zouari, H.1
Heutte, L.2
Lecourtier, Y.3
-
28
-
-
0035575477
-
Using iterated bagging to debias regressions
-
L. Breiman Using iterated bagging to debias regressions Machine Learning 45 3 2001 261 277
-
(2001)
Machine Learning
, vol.45
, Issue.3
, pp. 261-277
-
-
Breiman, L.1
-
29
-
-
0035478854
-
Random forests
-
L. Breiman Random forests Machine Learning 45 1 2001 5 32
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
31
-
-
80053403826
-
Ensemble methods in machine learning
-
Springer
-
T.G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the 1st International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 1857, Springer, 2000, pp. 1-15.
-
(2000)
Proceedings of the 1st International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
34
-
-
68949149733
-
On structured output training hard cases and an efficient alternative
-
T. Gärtner, and S. Vembu On structured output training hard cases and an efficient alternative Machine Learning 76 2009 227 242
-
(2009)
Machine Learning
, vol.76
, pp. 227-242
-
-
Gärtner, T.1
Vembu, S.2
-
35
-
-
0342905084
-
Application of machine learning techniques to the analysis of soil ecological data bases relationships between habitat features and Collembolan community characteristics
-
C. Kampichler, S. Džeroski, and R. Wieland Application of machine learning techniques to the analysis of soil ecological data bases relationships between habitat features and Collembolan community characteristics Soil Biology and Biochemistry 32 2 2000 197 209
-
(2000)
Soil Biology and Biochemistry
, vol.32
, Issue.2
, pp. 197-209
-
-
Kampichler, C.1
Džeroski, S.2
Wieland, R.3
-
36
-
-
0342671806
-
-
Ph.D. Thesis, Faculty of Computer Science, University of Ljubljana, Ljubljana, Slovenia
-
A. Karalič, First Order Regression, Ph.D. Thesis, Faculty of Computer Science, University of Ljubljana, Ljubljana, Slovenia, 1995.
-
(1995)
First Order Regression
-
-
Karalič, A.1
-
37
-
-
77954756986
-
Estimating vegetation height and canopy cover from remotely sensed data with machine learning
-
D. Stojanova, P. Panov, V. Gjorgjioski, A. Kobler, and S. Džeroski Estimating vegetation height and canopy cover from remotely sensed data with machine learning Ecological Informatics 5 4 2010 256 266
-
(2010)
Ecological Informatics
, vol.5
, Issue.4
, pp. 256-266
-
-
Stojanova, D.1
Panov, P.2
Gjorgjioski, V.3
Kobler, A.4
Džeroski, S.5
-
38
-
-
77951200897
-
-
Master's Thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
-
D. Stojanova, Estimating Forest Properties from Remotely Sensed Data by using Machine Learning, Master's Thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia, 2009.
-
(2009)
Estimating Forest Properties from Remotely Sensed Data by Using Machine Learning
-
-
Stojanova, D.1
-
39
-
-
71049114722
-
Modelling pollen dispersal of genetically modified oilseed rape within the field
-
D. Demšar, M. Debeljak, S. Džeroski, C. Lavigne, Modelling pollen dispersal of genetically modified oilseed rape within the field, in: The Annual Meeting of the Ecological Society of America, 2005.
-
(2005)
The Annual Meeting of the Ecological Society of America
-
-
D. Demšar1
-
42
-
-
62249107327
-
Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition
-
D. Kocev, S. Džeroski, M. White, G. Newell, and P. Griffioen Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition Ecological Modelling 220 8 2009 1159 1168
-
(2009)
Ecological Modelling
, vol.220
, Issue.8
, pp. 1159-1168
-
-
Kocev, D.1
Džeroski, S.2
White, M.3
Newell, G.4
Griffioen, P.5
-
43
-
-
84956852805
-
Simultaneous prediction of multiple chemical parameters of river water quality with TILDE
-
LNAI 1704, Springer
-
H. Blockeel, S. Džeroski, J. Grbović, Simultaneous prediction of multiple chemical parameters of river water quality with TILDE, in: Proceedings of the 3rd European Conference on PKDD, LNAI 1704, Springer, 1999, pp. 32-40.
-
(1999)
Proceedings of the 3rd European Conference on PKDD
, pp. 32-40
-
-
H. Blockeel1
-
44
-
-
0343391218
-
Predicting chemical parameters of river water quality from bioindicator data
-
S. Džeroski, D. Demšar, and J. Grbović Predicting chemical parameters of river water quality from bioindicator data Applied Intelligence 13 1 2000 7 17
-
(2000)
Applied Intelligence
, vol.13
, Issue.1
, pp. 7-17
-
-
Džeroski, S.1
Demšar, D.2
Grbović, J.3
-
45
-
-
84873447495
-
Multilabel classification of music into emotions
-
K. Trohidis, G. Tsoumakas, G. Kalliris, I. Vlahavas, Multilabel classification of music into emotions, in: Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), 2008, pp. 325-330.
-
(2008)
Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008)
, pp. 325-330
-
-
Trohidis, K.1
Tsoumakas, G.2
Kalliris, G.3
Vlahavas, I.4
-
46
-
-
0035492676
-
Insights offered by data-mining when analyzing media space data
-
M. Skrjanc, M. Grobelnik, and D. Zupanic Insights offered by data-mining when analyzing media space data Informatica (Slovenia) 25 3 2001 357 363
-
(2001)
Informatica (Slovenia)
, vol.25
, Issue.3
, pp. 357-363
-
-
Skrjanc, M.1
Grobelnik, M.2
Zupanic, D.3
-
47
-
-
3042597440
-
Learning multi-label scene classification
-
M. Boutell, J. Luo, X. Shen, and C. Brown Learning multi-label scene classification Pattern Recognition 37 9 2004 1757 1771
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
48
-
-
2542631648
-
A kernel method for multi-labelled classification
-
MIT Press
-
A. Elisseeff, J. Weston, A kernel method for multi-labelled classification, in: Advances in Neural Information Processing Systems, vol. 14, MIT Press, 2001, pp. 681-687.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 681-687
-
-
Elisseeff, A.1
Weston, J.2
-
49
-
-
78651371696
-
Hierchical annotation of medical images
-
Information Society (IS 2008), IJS, Ljubljana
-
I. Dimitrovski, D. Kocev, S. Loskovska, S. Džeroski, Hierchical annotation of medical images, in: Proceedings of the 11th International Multiconference - Information Society (IS 2008), IJS, Ljubljana, 2008, pp. 174-181.
-
(2008)
Proceedings of the 11th International Multiconference
, pp. 174-181
-
-
I. Dimitrovski1
-
51
-
-
22944464423
-
The enron corpus: A new dataset for email classification research
-
Springer
-
B. Klimt, Y. Yang, The enron corpus: a new dataset for email classification research, in: ECML '04: Proceedings of the 18th European Conference on Machine Learning, Lecture Notes in Computer Science, vol. 3201, Springer, 2004, pp. 217-226.
-
(2004)
ECML '04: Proceedings of the 18th European Conference on Machine Learning, Lecture Notes in Computer Science
, vol.3201
, pp. 217-226
-
-
Klimt, B.1
Yang, Y.2
-
55
-
-
65649138430
-
A systematic analysis of performance measures for classification tasks
-
M. Sokolova, and G. Lapalme A systematic analysis of performance measures for classification tasks Information Processing & Management 45 4 2009 427 437
-
(2009)
Information Processing & Management
, vol.45
, Issue.4
, pp. 427-437
-
-
Sokolova, M.1
Lapalme, G.2
-
56
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
57
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
M. Friedman A comparison of alternative tests of significance for the problem of m rankings Annals of Mathematical Statistics 11 1940 86 92
-
(1940)
Annals of Mathematical Statistics
, vol.11
, pp. 86-92
-
-
Friedman, M.1
-
59
-
-
0003653217
-
-
Ph.D. Thesis, Princeton University, Princeton, NY, USA
-
P.B. Nemenyi, Distribution-free Multiple Comparisons, Ph.D. Thesis, Princeton University, Princeton, NY, USA, 1963.
-
(1963)
Distribution-free Multiple Comparisons
-
-
Nemenyi, P.B.1
-
60
-
-
0031189914
-
Multitask learning
-
R. Caruana Multitask learning Machine Learning 28 1997 41 75
-
(1997)
Machine Learning
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
65
-
-
55149085224
-
A notion of task relatedness yielding provable multiple-task learning guarantees
-
S. Ben-David, and R.S. Borbely A notion of task relatedness yielding provable multiple-task learning guarantees Machine Learning 73 3 2008 273 287
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 273-287
-
-
Ben-David, S.1
Borbely, R.S.2
-
66
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R.K. Ando, T. Zhang, and P. Bartlett A framework for learning predictive structures from multiple tasks and unlabeled data Journal of Machine Learning Research 6 2005 1817 1853
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
Bartlett, P.3
-
68
-
-
81055138158
-
Multi-task learning to rank for web search
-
Y. Chang, J. Bai, K. Zhou, G.-R. Xue, H. Zha, and Z. Zheng Multi-task learning to rank for web search Pattern Recognition Letters 33 2 2012 173 181
-
(2012)
Pattern Recognition Letters
, vol.33
, Issue.2
, pp. 173-181
-
-
Chang, Y.1
Bai, J.2
Zhou, K.3
Xue, G.-R.4
Zha, H.5
Zheng, Z.6
-
69
-
-
78049339967
-
Expectation propagation for Bayesian multi-task feature selection
-
Springer
-
D. Hernández-Lobato, J. Hernández-Lobato, T. Helleputte, P. Dupont, Expectation propagation for Bayesian multi-task feature selection, in: ECML '10: Proceedings of the 21st European Conference on Machine Learning, Lecture Notes in Computer Science, vol. 6321, Springer, 2010, pp. 522-537.
-
(2010)
ECML '10: Proceedings of the 21st European Conference on Machine Learning, Lecture Notes in Computer Science
, vol.6321
, pp. 522-537
-
-
Hernández-Lobato, D.1
-
70
-
-
0002799895
-
Adaptive multivariate ridge regression
-
P.J. Brown, and J.V. Zidek Adaptive multivariate ridge regression The Annals of Statistics 8 1 1980 64 74
-
(1980)
The Annals of Statistics
, vol.8
, Issue.1
, pp. 64-74
-
-
Brown, P.J.1
Zidek, J.V.2
-
72
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
B. Bakker, and T. Heskes Task clustering and gating for Bayesian multitask learning Journal of Machine Learning Research 4 2003 83 99
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
73
-
-
34547994508
-
Multi-task reinforcement learning: A hierarchical Bayesian approach
-
ACM
-
A. Wilson, A. Fern, S. Ray, P. Tadepalli, Multi-task reinforcement learning: a hierarchical Bayesian approach, in: ICML '07: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 1015-1022.
-
(2007)
ICML '07: Proceedings of the 24th International Conference on Machine Learning
, pp. 1015-1022
-
-
Wilson, A.1
Fern, A.2
Ray, S.3
Tadepalli, P.4
-
74
-
-
67649387956
-
Multi-output regression on the output manifold
-
G. Liu, Z. Lin, and Y. Yu Multi-output regression on the output manifold Pattern Recognition 42 11 2009 2737 2743
-
(2009)
Pattern Recognition
, vol.42
, Issue.11
, pp. 2737-2743
-
-
Liu, G.1
Lin, Z.2
Yu, Y.3
-
78
-
-
13444283846
-
Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae
-
Y. Chen, and D. Xu Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae Nucleic Acids Research 32 21 2004 6414 6424
-
(2004)
Nucleic Acids Research
, vol.32
, Issue.21
, pp. 6414-6424
-
-
Chen, Y.1
Xu, D.2
-
79
-
-
47549104748
-
Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function
-
W. Tian, L.V. Zhang, M. Taşan, F.D. Gibbons, O.D. King, J. Park, Z. Wunderlich, J.M. Cherry, and F.P. Roth Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function Genome Biology 9 S1 2008 S7+
-
(2008)
Genome Biology
, vol.9 S1
-
-
Tian, W.1
Zhang, L.V.2
Taşan, M.3
Gibbons, F.D.4
King, O.D.5
Park, J.6
Wunderlich, Z.7
Cherry, J.M.8
Roth, F.P.9
-
80
-
-
47549088657
-
Consistent probabilistic outputs for protein function prediction
-
G. Obozinski, G. Lanckriet, C. Grant, M.I. Jordan, and W.S. Noble Consistent probabilistic outputs for protein function prediction Genome Biology 9 S1 2008 S6+
-
(2008)
Genome Biology
, vol.9 S1
-
-
Obozinski, G.1
Lanckriet, G.2
Grant, C.3
Jordan, M.I.4
Noble, W.S.5
-
81
-
-
47549108100
-
Predicting gene function in a hierarchical context with an ensemble of classifiers
-
Y. Guan, C.L. Myers, D.C. Hess, Z. Barutcuoglu, A.A. Caudy, and O.G. Troyanskaya Predicting gene function in a hierarchical context with an ensemble of classifiers Genome Biology 9 S1 2008 S3+
-
(2008)
Genome Biology
, vol.9 S1
-
-
Guan, Y.1
Myers, C.L.2
Hess, D.C.3
Barutcuoglu, Z.4
Caudy, A.A.5
Troyanskaya, O.G.6
-
83
-
-
78049321347
-
A semi-dependent decomposition approach to learn hierarchical classifiers
-
J. Díez, J.J. del Coz, and A. Bahamonde A semi-dependent decomposition approach to learn hierarchical classifiers Pattern Recognition 43 11 2010 3795 3804
-
(2010)
Pattern Recognition
, vol.43
, Issue.11
, pp. 3795-3804
-
-
Díez, J.1
Del Coz, J.J.2
Bahamonde, A.3
-
85
-
-
11244325978
-
Hierarchical multi-classification
-
H. Blockeel, M. Bruynooghe, S. Džeroski, J. Ramon, J. Struyf, Hierarchical multi-classification, in: KDD-2002 Workshop Notes: MRDM 2002, Workshop on Multi-relational Data Mining, 2002, pp. 21-35.
-
(2002)
KDD-2002 Workshop Notes: MRDM 2002, Workshop on Multi-relational Data Mining
, pp. 21-35
-
-
H. Blockeel1
-
86
-
-
38449086339
-
Towards a general framework for data mining
-
Džzeroski S., Struyf J. (Eds.) Revised Selected and Invited Papers
-
Džeroski S. Towards a general framework for data mining. in: Džzeroski S., Struyf J. (Eds.). Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Revised Selected and Invited Papers, vol. 4747, 2007, pp. 259-300
-
(2007)
Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006
, vol.4747
, pp. 259-300
-
-
Džeroski, S.1
|