메뉴 건너뛰기




Volumn 46, Issue 3, 2013, Pages 817-833

Tree ensembles for predicting structured outputs

Author keywords

Ensemble methods; Hierarchical multi label classification; Multi target classification; Multi target regression; Predictive clustering trees; Structured outputs

Indexed keywords

CLUSTERING TREES; ENSEMBLE METHODS; MULTI-LABEL; MULTITARGET; STRUCTURED OUTPUTS;

EID: 84870255848     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.09.023     Document Type: Article
Times cited : (250)

References (86)
  • 3
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • C. Silla, and A. Freitas A survey of hierarchical classification across different application domains Data Mining and Knowledge Discovery 22 1-2 2011 31 72
    • (2011) Data Mining and Knowledge Discovery , vol.22 , Issue.12 , pp. 31-72
    • Silla, C.1    Freitas, A.2
  • 9
    • 77949701475 scopus 로고    scopus 로고
    • Finding explained groups of time-course gene expression profiles with predictive clustering trees
    • I. Slavkov, V. Gjorgjioski, J. Struyf, and S. Džeroski Finding explained groups of time-course gene expression profiles with predictive clustering trees Molecular Biosystems 6 4 2010 729 740
    • (2010) Molecular Biosystems , vol.6 , Issue.4 , pp. 729-740
    • Slavkov, I.1    Gjorgjioski, V.2    Struyf, J.3    Džeroski, S.4
  • 11
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 13
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms bagging, boosting, and variants Machine Learning 36 1 1999 105 139
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 14
    • 33750303563 scopus 로고    scopus 로고
    • Decision trees for hierarchical multilabel classification: A case study in functional genomics
    • Springer
    • H. Blockeel, L. Schietgat, J. Struyf, S. Džeroski, A. Clare, Decision trees for hierarchical multilabel classification: a case study in functional genomics, in: Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science, vol. 4213, Springer, 2006, pp. 18-29.
    • (2006) Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science , vol.4213 , pp. 18-29
    • H. Blockeel1
  • 16
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests a survey and results of new tests
    • A. Verikas, A. Gelzinis, and M. Bacauskiene Mining data with random forests a survey and results of new tests Pattern Recognition 44 2 2011 330 349
    • (2011) Pattern Recognition , vol.44 , Issue.2 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 18
    • 38449083520 scopus 로고    scopus 로고
    • Analysis of time series data with predictive clustering trees
    • KDID 2006, Revised Selected and Invited Papers, Lecture Notes in Computer Science Springer
    • S. Džeroski, V. Gjorgjioski, I. Slavkov, J. Struyf, Analysis of time series data with predictive clustering trees, in: Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Revised Selected and Invited Papers, Lecture Notes in Computer Science, vol. 4747, Springer, 2007, pp. 63-80.
    • (2007) Knowledge Discovery in Inductive Databases, 5th International Workshop , vol.4747 , pp. 63-80
    • S. Džeroski1
  • 21
    • 0003914835 scopus 로고    scopus 로고
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • P. Langley, Elements of Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.
    • (1996) Elements of Machine Learning
    • Langley, P.1
  • 26
    • 24044547645 scopus 로고    scopus 로고
    • Controlling the diversity in classifier ensembles through a measure of agreement
    • H. Zouari, L. Heutte, and Y. Lecourtier Controlling the diversity in classifier ensembles through a measure of agreement Pattern Recognition 38 11 2005 2195 2199
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 2195-2199
    • Zouari, H.1    Heutte, L.2    Lecourtier, Y.3
  • 28
    • 0035575477 scopus 로고    scopus 로고
    • Using iterated bagging to debias regressions
    • L. Breiman Using iterated bagging to debias regressions Machine Learning 45 3 2001 261 277
    • (2001) Machine Learning , vol.45 , Issue.3 , pp. 261-277
    • Breiman, L.1
  • 29
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 34
    • 68949149733 scopus 로고    scopus 로고
    • On structured output training hard cases and an efficient alternative
    • T. Gärtner, and S. Vembu On structured output training hard cases and an efficient alternative Machine Learning 76 2009 227 242
    • (2009) Machine Learning , vol.76 , pp. 227-242
    • Gärtner, T.1    Vembu, S.2
  • 35
    • 0342905084 scopus 로고    scopus 로고
    • Application of machine learning techniques to the analysis of soil ecological data bases relationships between habitat features and Collembolan community characteristics
    • C. Kampichler, S. Džeroski, and R. Wieland Application of machine learning techniques to the analysis of soil ecological data bases relationships between habitat features and Collembolan community characteristics Soil Biology and Biochemistry 32 2 2000 197 209
    • (2000) Soil Biology and Biochemistry , vol.32 , Issue.2 , pp. 197-209
    • Kampichler, C.1    Džeroski, S.2    Wieland, R.3
  • 36
    • 0342671806 scopus 로고
    • Ph.D. Thesis, Faculty of Computer Science, University of Ljubljana, Ljubljana, Slovenia
    • A. Karalič, First Order Regression, Ph.D. Thesis, Faculty of Computer Science, University of Ljubljana, Ljubljana, Slovenia, 1995.
    • (1995) First Order Regression
    • Karalič, A.1
  • 37
    • 77954756986 scopus 로고    scopus 로고
    • Estimating vegetation height and canopy cover from remotely sensed data with machine learning
    • D. Stojanova, P. Panov, V. Gjorgjioski, A. Kobler, and S. Džeroski Estimating vegetation height and canopy cover from remotely sensed data with machine learning Ecological Informatics 5 4 2010 256 266
    • (2010) Ecological Informatics , vol.5 , Issue.4 , pp. 256-266
    • Stojanova, D.1    Panov, P.2    Gjorgjioski, V.3    Kobler, A.4    Džeroski, S.5
  • 39
    • 71049114722 scopus 로고    scopus 로고
    • Modelling pollen dispersal of genetically modified oilseed rape within the field
    • D. Demšar, M. Debeljak, S. Džeroski, C. Lavigne, Modelling pollen dispersal of genetically modified oilseed rape within the field, in: The Annual Meeting of the Ecological Society of America, 2005.
    • (2005) The Annual Meeting of the Ecological Society of America
    • D. Demšar1
  • 42
    • 62249107327 scopus 로고    scopus 로고
    • Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition
    • D. Kocev, S. Džeroski, M. White, G. Newell, and P. Griffioen Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition Ecological Modelling 220 8 2009 1159 1168
    • (2009) Ecological Modelling , vol.220 , Issue.8 , pp. 1159-1168
    • Kocev, D.1    Džeroski, S.2    White, M.3    Newell, G.4    Griffioen, P.5
  • 43
    • 84956852805 scopus 로고    scopus 로고
    • Simultaneous prediction of multiple chemical parameters of river water quality with TILDE
    • LNAI 1704, Springer
    • H. Blockeel, S. Džeroski, J. Grbović, Simultaneous prediction of multiple chemical parameters of river water quality with TILDE, in: Proceedings of the 3rd European Conference on PKDD, LNAI 1704, Springer, 1999, pp. 32-40.
    • (1999) Proceedings of the 3rd European Conference on PKDD , pp. 32-40
    • H. Blockeel1
  • 44
    • 0343391218 scopus 로고    scopus 로고
    • Predicting chemical parameters of river water quality from bioindicator data
    • S. Džeroski, D. Demšar, and J. Grbović Predicting chemical parameters of river water quality from bioindicator data Applied Intelligence 13 1 2000 7 17
    • (2000) Applied Intelligence , vol.13 , Issue.1 , pp. 7-17
    • Džeroski, S.1    Demšar, D.2    Grbović, J.3
  • 46
    • 0035492676 scopus 로고    scopus 로고
    • Insights offered by data-mining when analyzing media space data
    • M. Skrjanc, M. Grobelnik, and D. Zupanic Insights offered by data-mining when analyzing media space data Informatica (Slovenia) 25 3 2001 357 363
    • (2001) Informatica (Slovenia) , vol.25 , Issue.3 , pp. 357-363
    • Skrjanc, M.1    Grobelnik, M.2    Zupanic, D.3
  • 47
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown Learning multi-label scene classification Pattern Recognition 37 9 2004 1757 1771
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 49
    • 78651371696 scopus 로고    scopus 로고
    • Hierchical annotation of medical images
    • Information Society (IS 2008), IJS, Ljubljana
    • I. Dimitrovski, D. Kocev, S. Loskovska, S. Džeroski, Hierchical annotation of medical images, in: Proceedings of the 11th International Multiconference - Information Society (IS 2008), IJS, Ljubljana, 2008, pp. 174-181.
    • (2008) Proceedings of the 11th International Multiconference , pp. 174-181
    • I. Dimitrovski1
  • 54
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • Z. Barutcuoglu, R.E. Schapire, and O.G. Troyanskaya Hierarchical multi-label prediction of gene function Bioinformatics 22 7 2006 830 836
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 55
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • M. Sokolova, and G. Lapalme A systematic analysis of performance measures for classification tasks Information Processing & Management 45 4 2009 427 437
    • (2009) Information Processing & Management , vol.45 , Issue.4 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 56
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 57
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman A comparison of alternative tests of significance for the problem of m rankings Annals of Mathematical Statistics 11 1940 86 92
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 60
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana Multitask learning Machine Learning 28 1997 41 75
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 65
    • 55149085224 scopus 로고    scopus 로고
    • A notion of task relatedness yielding provable multiple-task learning guarantees
    • S. Ben-David, and R.S. Borbely A notion of task relatedness yielding provable multiple-task learning guarantees Machine Learning 73 3 2008 273 287
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 273-287
    • Ben-David, S.1    Borbely, R.S.2
  • 66
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R.K. Ando, T. Zhang, and P. Bartlett A framework for learning predictive structures from multiple tasks and unlabeled data Journal of Machine Learning Research 6 2005 1817 1853
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2    Bartlett, P.3
  • 70
    • 0002799895 scopus 로고
    • Adaptive multivariate ridge regression
    • P.J. Brown, and J.V. Zidek Adaptive multivariate ridge regression The Annals of Statistics 8 1 1980 64 74
    • (1980) The Annals of Statistics , vol.8 , Issue.1 , pp. 64-74
    • Brown, P.J.1    Zidek, J.V.2
  • 72
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • B. Bakker, and T. Heskes Task clustering and gating for Bayesian multitask learning Journal of Machine Learning Research 4 2003 83 99
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 74
    • 67649387956 scopus 로고    scopus 로고
    • Multi-output regression on the output manifold
    • G. Liu, Z. Lin, and Y. Yu Multi-output regression on the output manifold Pattern Recognition 42 11 2009 2737 2743
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2737-2743
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 78
    • 13444283846 scopus 로고    scopus 로고
    • Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae
    • Y. Chen, and D. Xu Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae Nucleic Acids Research 32 21 2004 6414 6424
    • (2004) Nucleic Acids Research , vol.32 , Issue.21 , pp. 6414-6424
    • Chen, Y.1    Xu, D.2
  • 83
    • 78049321347 scopus 로고    scopus 로고
    • A semi-dependent decomposition approach to learn hierarchical classifiers
    • J. Díez, J.J. del Coz, and A. Bahamonde A semi-dependent decomposition approach to learn hierarchical classifiers Pattern Recognition 43 11 2010 3795 3804
    • (2010) Pattern Recognition , vol.43 , Issue.11 , pp. 3795-3804
    • Díez, J.1    Del Coz, J.J.2    Bahamonde, A.3
  • 86
    • 38449086339 scopus 로고    scopus 로고
    • Towards a general framework for data mining
    • Džzeroski S., Struyf J. (Eds.) Revised Selected and Invited Papers
    • Džeroski S. Towards a general framework for data mining. in: Džzeroski S., Struyf J. (Eds.). Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Revised Selected and Invited Papers, vol. 4747, 2007, pp. 259-300
    • (2007) Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006 , vol.4747 , pp. 259-300
    • Džeroski, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.