메뉴 건너뛰기




Volumn 28, Issue 5-6, 2014, Pages 1266-1313

Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering

Author keywords

Clustering; Geophysical data stream; Inverse distance weighting; Spatial autocorrelation

Indexed keywords

AUTOCORRELATION; DATA MINING; GEOPHYSICS;

EID: 84906779919     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-014-0372-z     Document Type: Article
Times cited : (22)

References (73)
  • 3
    • 84869159361 scopus 로고    scopus 로고
    • Multi-target regression with rule ensembles
    • 2973605
    • Aho T, Zenko B, Dzeroski S, Elomaa T (2012) Multi-target regression with rule ensembles. J Mach Learn Res 2(13):2367-2407
    • (2012) J Mach Learn Res , vol.2 , Issue.13 , pp. 2367-2407
    • Aho, T.1    Zenko, B.2    Dzeroski, S.3    Elomaa, T.4
  • 5
    • 0029507498 scopus 로고
    • Local indicators of spatial association:lisa
    • 10.1111/j.1538-4632.1995.tb00338.x
    • Anselin L (1995) Local indicators of spatial association:lisa. Geogr Anal 27(2):93-115
    • (1995) Geogr Anal , vol.27 , Issue.2 , pp. 93-115
    • Anselin, L.1
  • 6
    • 84867651350 scopus 로고    scopus 로고
    • Learning and transferring geographically weighted regression trees across time
    • Springer, Berlin
    • Appice A, Ceci M, Malerba D, Lanza A (2012) Learning and transferring geographically weighted regression trees across time. In: Proceedings of MSM/MUSE 2012, LNCS, vol 7472. Springer, Berlin, pp 97-117
    • (2012) Proceedings of MSM/MUSE 2012, LNCS , vol.7472 , pp. 97-117
    • Appice, A.1    Ceci, M.2    Malerba, D.3    Lanza, A.4
  • 7
    • 84921067309 scopus 로고    scopus 로고
    • Summarizing numeric spatial data streams by trend cluster discovery
    • doi: 10.1007/s10618-013-0337-7
    • Appice A, Ciampi A, Malerba D (2013a) Summarizing numeric spatial data streams by trend cluster discovery. Data Mining Knowl Discov. doi: 10.1007/s10618-013-0337-7
    • (2013) Data Mining Knowl Discov
    • Appice, A.1    Ciampi, A.2    Malerba, D.3
  • 8
    • 84906786820 scopus 로고    scopus 로고
    • Using trend clusters for spatiotemporal interpolation of missing data in a sensor network
    • Appice A, Ciampi A, Malerba D, Guccione P (2013b) Using trend clusters for spatiotemporal interpolation of missing data in a sensor network. J Spatial Inf Sci 6(1):119-153
    • (2013) J Spatial Inf Sci , vol.6 , Issue.1 , pp. 119-153
    • Appice, A.1    Ciampi, A.2    Malerba, D.3    Guccione, P.4
  • 10
    • 84860916184 scopus 로고    scopus 로고
    • An overview of approaches to the analysis and modelling of multivariate geostatistical data
    • 10.1007/s11004-011-9360-7 10.1007/s11004-011-9360-7
    • Bailey T, Krzanowski W (2012) An overview of approaches to the analysis and modelling of multivariate geostatistical data. Math Geosci 44(4):381-393. doi: 10.1007/s11004-011-9360-7
    • (2012) Math Geosci , vol.44 , Issue.4 , pp. 381-393
    • Bailey, T.1    Krzanowski, W.2
  • 11
    • 46549084528 scopus 로고    scopus 로고
    • Modelling directional spatial processes in ecological data
    • doi: 10.1016/j.ecolmodel.2008.04.001
    • Blanchet FG, Legendre P, Borcard D (2008) Modelling directional spatial processes in ecological data. Ecol Model 215(4):325-336. doi: 10.1016/j.ecolmodel.2008.04.001. http://www.sciencedirect.com/science/article/ pii/S0304380008001798
    • (2008) Ecol Model , vol.215 , Issue.4 , pp. 325-336
    • Blanchet, F.G.1    Legendre, P.2    Borcard, D.3
  • 12
    • 0002343269 scopus 로고    scopus 로고
    • Top-down induction of clustering trees
    • Morgan Kaufmann
    • Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: Proceedings of ICML. Morgan Kaufmann, pp 55-63
    • (1998) Proceedings of ICML , pp. 55-63
    • Blockeel, H.1    De Raedt, L.2    Ramon, J.3
  • 13
    • 0036303285 scopus 로고    scopus 로고
    • Local measures of spatial association
    • 1891473
    • Boots B (2002) Local measures of spatial association. Ecoscience 9(2):168-176
    • (2002) Ecoscience , vol.9 , Issue.2 , pp. 168-176
    • Boots, B.1
  • 17
    • 0025683716 scopus 로고
    • The origins of kriging
    • 10.1007/BF00889887 10.1007/BF00889887 0964.86511 1047810
    • Cressie N (1990) The origins of kriging. Math Geol 22(3):239-252. doi: 10.1007/BF00889887
    • (1990) Math Geol , vol.22 , Issue.3 , pp. 239-252
    • Cressie, N.1
  • 18
    • 84995007807 scopus 로고
    • Wiley, New York. doi: 10.1111/j.1365-3121.1992.tb00605.x
    • Cressie N (1993) Statistics for spatial data. Wiley, New York. doi: 10.1111/j.1365-3121.1992.tb00605.x
    • (1993) Statistics for Spatial Data
    • Cressie, N.1
  • 19
    • 84866008011 scopus 로고    scopus 로고
    • Using relational decision trees to model out-crossing rates in a multi-field setting
    • Debeljak M, Trajanov A, Stojanova D, Leprince F, Džeroski S (2012) Using relational decision trees to model out-crossing rates in a multi-field setting. Ecol Model 245:75-83
    • (2012) Ecol Model , vol.245 , pp. 75-83
    • Debeljak, M.T.1
  • 20
    • 71049114722 scopus 로고    scopus 로고
    • Modelling pollen dispersal of genetically modified oilseed rape within the field
    • The Ecological Society of America
    • Demšar D, Debeljak M, Lavigne C, Džeroski S (2005) Modelling pollen dispersal of genetically modified oilseed rape within the field. In: Abstracts of the 90th ESA annual meeting, The Ecological Society of America, p 152
    • (2005) Abstracts of the 90th ESA Annual Meeting , pp. 152
    • Demšar, D.D.1
  • 21
    • 84870284524 scopus 로고    scopus 로고
    • Revisiting guerry's data: Introducing spatial constraints in multivariate analysis
    • 10.1214/10-AOAS356 1234.62092 2907115
    • Dray S, Jombart T (2011) Revisiting guerry's data: introducing spatial constraints in multivariate analysis. Ann Appl Stat 5(4):2278-2299
    • (2011) Ann Appl Stat , vol.5 , Issue.4 , pp. 2278-2299
    • Dray, S.1    Jombart, T.2
  • 22
    • 33745213566 scopus 로고    scopus 로고
    • Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (pcnm)
    • doi: 10.1016/j.ecolmodel.2006.02.015
    • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (pcnm). Ecol Model 196(34):483-493. doi: 10.1016/j.ecolmodel.2006.02.015. http://www.sciencedirect.com/science/article/pii/S0304380006000925
    • (2006) Ecol Model , vol.196 , Issue.34 , pp. 483-493
    • Dray, S.1    Legendre, P.2    Peres-Neto, P.R.3
  • 23
    • 84878264021 scopus 로고    scopus 로고
    • European Environment Agency
    • European Environment Agency (2006) Corine land cover 2006. http://sia.eionet.europa.eu/CLC2006
    • (2006) Corine Land Cover 2006
  • 25
    • 48249151824 scopus 로고    scopus 로고
    • A history of the concept of spatial autocorrelation: A geographer's perspective
    • 10.1111/j.1538-4632.2008.00727.x
    • Getis A (2008) A history of the concept of spatial autocorrelation: a geographer's perspective. Geogr Anal 40(3):297-309
    • (2008) Geogr Anal , vol.40 , Issue.3 , pp. 297-309
    • Getis, A.1
  • 26
    • 84977363017 scopus 로고
    • The analysis of spatial association by use of distance statistics
    • 10.1111/j.1538-4632.1992.tb00261.x
    • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189-206
    • (1992) Geogr Anal , vol.24 , Issue.3 , pp. 189-206
    • Getis, A.1    Ord, J.K.2
  • 29
    • 84945286873 scopus 로고    scopus 로고
    • RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood
    • Springer, Berlin
    • Gora G, Wojna A (2002) RIONA: a classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood. In: Proceedings of ECML 2002. Springer, Berlin, pp 111-123
    • (2002) Proceedings of ECML 2002 , pp. 111-123
    • Gora, G.1    Wojna, A.2
  • 30
    • 78149425876 scopus 로고    scopus 로고
    • Using fuzzy c-means and local autocorrelation to cluster satellite-inferred burn severity classes
    • 10.1071/WF08126
    • Holden ZA, Evans JS (2010) Using fuzzy c-means and local autocorrelation to cluster satellite-inferred burn severity classes. Int J Wildland Fire 19(7):853-860
    • (2010) Int J Wildland Fire , vol.19 , Issue.7 , pp. 853-860
    • Holden, Z.A.1    Evans, J.S.2
  • 35
    • 0031554144 scopus 로고    scopus 로고
    • Sparse spatial autoregressions
    • 10.1016/S0167-7152(96)00140-X
    • Kelley P, Barry R (1999) Sparse spatial autoregressions. Stat Probab Lett 33:291-297
    • (1999) Stat Probab Lett , vol.33 , pp. 291-297
    • Kelley, P.1    Barry, R.2
  • 39
    • 0021032607 scopus 로고
    • Spatial interpolation methods: A review
    • 10.1559/152304083783914958 10.1559/152304083783914958
    • Lam N (1983) Spatial interpolation methods: a review. Am Cartogr 10:129-149. doi: 10.1559/152304083783914958
    • (1983) Am Cartogr , vol.10 , pp. 129-149
    • Lam, N.1
  • 40
    • 0027881344 scopus 로고
    • Spatial autocorrelation: Trouble or new paradigm?
    • 10.2307/1939924
    • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659-1673
    • (1993) Ecology , vol.74 , pp. 1659-1673
    • Legendre, P.1
  • 43
    • 84955605888 scopus 로고    scopus 로고
    • A comparison of spatio-temporal interpolation methods
    • Springer, Berlin
    • Li L, Revesz P (2002) A comparison of spatio-temporal interpolation methods. GIScience, LNCS 2478. Springer, Berlin, pp 145-160
    • (2002) GIScience, LNCS 2478 , pp. 145-160
    • Li, L.1    Revesz, P.2
  • 45
    • 1842433866 scopus 로고    scopus 로고
    • A spatial interpolation method based on radial basis function networks incorporating a semivariogram model
    • 10.1016/j.jhydrol.2003.10.008
    • Lin G, Chen L (2004) A spatial interpolation method based on radial basis function networks incorporating a semivariogram model. J Hydrol 288:288-298
    • (2004) J Hydrol , vol.288 , pp. 288-298
    • Lin, G.1    Chen, L.2
  • 46
    • 45049086848 scopus 로고    scopus 로고
    • An adaptive inverse-distance weighting spatial interpolation technique
    • 10.1016/j.cageo.2007.07.010 10.1016/j.cageo.2007.07.010
    • Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. J Comput Geosci 34:1044-1055. doi: 10.1016/j.cageo. 2007.07.010
    • (2008) J Comput Geosci , vol.34 , pp. 1044-1055
    • Lu, G.Y.1    Wong, D.W.2
  • 49
    • 84906788860 scopus 로고    scopus 로고
    • NOAACoastWatch
    • NOAACoastWatch (2013a) Ndbc standard meteorological buoy data. http://coastwatch.pfeg.noaa.gov/erddap/tabledap/cwwcNDBCMet.html
    • (2013) Ndbc Standard Meteorological Buoy Data
  • 51
    • 84906783298 scopus 로고    scopus 로고
    • NOAACoastWatch (1 day composite)
    • NOAACoastWatch (2013c) Wind stress, metop ascat, global, near real time (1 day composite). http://coastwatch.pfeg.noaa.gov/erddap/griddap/ erdQAstress1day.html
    • (2013) Wind Stress, Metop Ascat, Global, Near Real Time
  • 52
    • 84906780763 scopus 로고    scopus 로고
    • NOAANODC 5 degree, temperature, salinity, oxygen
    • NOAANODC (2009) World ocean atlas 2009, seasonal climatology, 5 degree, temperature, salinity, oxygen. http://coastwatch.pfeg.noaa.gov/erddap/griddap/ nodcWoa09sea5t.html
    • (2009) World Ocean Atlas 2009, Seasonal Climatology
  • 53
    • 84874079516 scopus 로고    scopus 로고
    • Spatial interpolation using multiple regression
    • Zaki MJ, Siebes A, Yu JX, Goethals B, Webb GI, Wu X (eds) IEEE Computer Society
    • Ohashi O, Torgo L (2012) Spatial interpolation using multiple regression. In: Zaki MJ, Siebes A, Yu JX, Goethals B, Webb GI, Wu X (eds) 12th IEEE international conference on data mining, ICDM 2012. IEEE Computer Society, pp 1044-1049
    • (2012) 12th IEEE International Conference on Data Mining, ICDM 2012 , pp. 1044-1049
    • Ohashi, O.1    Torgo, L.2
  • 55
    • 0031410367 scopus 로고    scopus 로고
    • Quick computation of regression with a spatially autoregressive dependent variable
    • 10.1111/j.1538-4632.1997.tb00959.x
    • Pace P, Barry R (1997) Quick computation of regression with a spatially autoregressive dependent variable. Geogr Anal 29(3):232-247
    • (1997) Geogr Anal , vol.29 , Issue.3 , pp. 232-247
    • Pace, P.1    Barry, R.2
  • 58
    • 0000832522 scopus 로고
    • Nonparametric estimation of nonstationary spatial covariance structure
    • 10.1080/01621459.1992.10475181
    • Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87:108-119
    • (1992) J Am Stat Assoc , vol.87 , pp. 108-119
    • Sampson, P.D.1    Guttorp, P.2
  • 60
    • 0342960838 scopus 로고    scopus 로고
    • Spatial interpolation and estimation of solar irradiation by cumulative semivariograms
    • 10.1016/S0038-092X(01)00009-3 10.1016/S0038-092X(01)00009-3
    • Şen Z, Şalhn AD (2001) Spatial interpolation and estimation of solar irradiation by cumulative semivariograms. Solar Energy 71(1):11-21. doi: 10.1016/S0038-092X(01)00009-3
    • (2001) Solar Energy , vol.71 , Issue.1 , pp. 11-21
    • Şen, Z.1    Şalhn, A.D.2
  • 61
    • 0014432211 scopus 로고
    • A two-dimensional interpolation function for irregularly-spaced data
    • ACM, New York, NY, USA doi: 10.1145/800186.810616
    • Shepard D (1968a) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, ACM '68. ACM, New York, NY, USA, pp 517-524. doi: 10.1145/800186.810616
    • (1968) Proceedings of the 1968 23rd ACM National Conference, ACM '68 , pp. 517-524
    • Shepard, D.1
  • 62
    • 0014432211 scopus 로고
    • A two-dimensional interpolation function for irregularly-spaced data
    • ACM
    • Shepard D (1968b) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM national conference, ACM, pp 517-524
    • (1968) Proceedings of the 1968 ACM National Conference , pp. 517-524
    • Shepard, D.1
  • 63
    • 77952879954 scopus 로고    scopus 로고
    • The application of cluster analysis in geophysical data interpretation
    • 10.1007/s10596-009-9150-1 1183.86010
    • Song YC, Meng HD (2010) The application of cluster analysis in geophysical data interpretation. Comput Geosci 14(2):263-271
    • (2010) Comput Geosci , vol.14 , Issue.2 , pp. 263-271
    • Song, Y.C.1    Meng, H.D.2
  • 67
    • 84864558206 scopus 로고    scopus 로고
    • Network regression with predictive clustering trees
    • 10.1007/s10618-012-0278-6 1260.62050 2951042
    • Stojanova D, Ceci M, Appice A, Dzeroski S (2012) Network regression with predictive clustering trees. Data Min Knowl Discov 25(2):378-413
    • (2012) Data Min Knowl Discov , vol.25 , Issue.2 , pp. 378-413
    • Stojanova, D.1    Ceci, M.2    Appice, A.3    Dzeroski, S.4
  • 68
    • 84870551039 scopus 로고    scopus 로고
    • Dealing with spatial autocorrelation when learning predictive clustering trees
    • Stojanova D, Ceci M, Appice A, Malerba D, Dzeroski S (2013) Dealing with spatial autocorrelation when learning predictive clustering trees. Ecol Inform 13:22-39
    • (2013) Ecol Inform , vol.13 , pp. 22-39
    • Stojanova, D.1    Ceci, M.2    Appice, A.3    Malerba, D.4    Dzeroski, S.5
  • 69
    • 84856610237 scopus 로고    scopus 로고
    • Geo-spatial grid-based transformations of precipitation estimates using spatial interpolation methods
    • 10.1016/j.cageo.2011.07.004 10.1016/j.cageo.2011.07.004
    • Teegavarapu RSV, Meskele T, Pathak CS (2012) Geo-spatial grid-based transformations of precipitation estimates using spatial interpolation methods. Comput Geosci 40:28-39. doi: 10.1016/j.cageo.2011.07.004
    • (2012) Comput Geosci , vol.40 , pp. 28-39
    • Teegavarapu, R.S.V.1    Meskele, T.2    Pathak, C.S.3
  • 70
    • 0018667832 scopus 로고
    • Cellular geography
    • Tobler W (1979) Cellular geography. Philos Geogr 20:379-386
    • (1979) Philos Geogr , vol.20 , pp. 379-386
    • Tobler, W.1
  • 71
    • 74349095900 scopus 로고    scopus 로고
    • Spatial interpolation in wireless sensor networks: Localized algorithms for variogram modeling and Kriging
    • 10.1007/s10707-009-0078-3 10.1007/s10707-009-0078-3
    • Umer M, Kulik L, Tanin E (2010) Spatial interpolation in wireless sensor networks: localized algorithms for variogram modeling and Kriging. Geoinformatica 14(1):101-134. doi: 10.1007/s10707-009-0078-3
    • (2010) Geoinformatica , vol.14 , Issue.1 , pp. 101-134
    • Umer, M.1    Kulik, L.2    Tanin, E.3
  • 72
    • 0001717058 scopus 로고    scopus 로고
    • Induction of model trees for predicting continuous classes
    • Springer, Berlin
    • Wang Y, Witten I (1997) Induction of model trees for predicting continuous classes. In: Proceedings of ECML 1997. Springer, Berlin, pp 128-137
    • (1997) Proceedings of ECML 1997 , pp. 128-137
    • Wang, Y.1    Witten, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.