메뉴 건너뛰기




Volumn 25, Issue 2, 2012, Pages 378-413

Network regression with predictive clustering trees

Author keywords

Autocorrelation; Network data; Predictive clustering trees; Regression inference

Indexed keywords

CLUSTERING TREES; DATA MINING ALGORITHM; DATA SETS; INDEPENDENTLY AND IDENTICALLY DISTRIBUTED; MULTITARGET; NETWORK CLASSIFICATION; NETWORK DATA; NETWORK INFORMATION; PREDICTIVE MODELS; REAL-WORLD PROBLEM; REGRESSION INFERENCE; REGRESSION MODEL; SPATIAL DATA; SPATIAL NETWORK;

EID: 84864558206     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-012-0278-6     Document Type: Conference Paper
Times cited : (55)

References (60)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Springer, Berlin
    • Aha D, Kibler D (1991) Instance-based learning algorithms, Machine Learning Journal, vol 6. Springer, Berlin
    • (1991) Machine Learning Journal , vol.6
    • Aha, D.1    Kibler, D.2
  • 5
    • 48249151824 scopus 로고    scopus 로고
    • A history of the concept of spatial autocorrelation: A geographer's perspective
    • Arthur G (2008) A history of the concept of spatial autocorrelation: A geographer's perspective. Geogr Anal 40(3):297-309
    • (2008) Geogr Anal , vol.40 , Issue.3 , pp. 297-309
    • Arthur, G.1
  • 12
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using bayesian belief networks (research note)
    • Cooper GF (1990) The computational complexity of probabilistic inference using bayesian belief networks (research note). Artif Intell 42:393-405
    • (1990) Artif Intell , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 15
    • 84866008011 scopus 로고    scopus 로고
    • Using relational decision trees to model out-crossing rates in a multi-field setting
    • doi:10.1016/j.ecolmodel.2012.04.015
    • Debeljak M, Trajanov A, Stojanova D, Leprince F, Džeroski S (2012) Using relational decision trees to model out-crossing rates in a multi-field setting. Ecol Modell. doi:10.1016/j.ecolmodel.2012.04.015
    • (2012) Ecol Modell
    • Debeljak, M.1    Trajanov, A.2    Stojanova, D.3    Leprince, F.4    Džeroski, S.5
  • 17
    • 0000281213 scopus 로고    scopus 로고
    • Spatial autocorrelation: A primer
    • Dubin RA (1998) Spatial autocorrelation: A primer. J Hous Econ 7:304-327
    • (1998) J Hous Econ , vol.7 , pp. 304-327
    • Dubin, R.A.1
  • 19
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom infation
    • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom infation. Econometrica 50:987-1007
    • (1982) Econometrica , vol.50 , pp. 987-1007
    • Engle, R.F.1
  • 20
    • 0034734120 scopus 로고    scopus 로고
    • Spatial and space-time correlations in ecological models
    • Epperson B (2000) Spatial and space-time correlations in ecological models. Ecol Model 132:63-76
    • (2000) Ecol Model , vol.132 , pp. 63-76
    • Epperson, B.1
  • 25
    • 84945286873 scopus 로고    scopus 로고
    • Riona: A classifier combining rule induction and k-nn method with automated selection of optimal neighbourhood
    • Springer
    • Gora G, Wojna A (2002) RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood. In: Proceedings of 13th European Conference on Machine Learning, Springer, pp 111-123
    • (2002) Proceedings of 13th European Conference on Machine Learning , pp. 111-123
    • Gora, G.1    Wojna, A.2
  • 26
    • 80053984969 scopus 로고    scopus 로고
    • A methodology for mining document-enriched heterogeneous information networks
    • Springer
    • Grcar M, Lavrac N (2011) A methodology for mining document-enriched heterogeneous information networks. In: Proceedings of 14 International Conference on Discovery Science, vol 6926, Springer, pp 107-121
    • (2011) Proceedings of 14 International Conference on Discovery Science , vol.6926 , pp. 107-121
    • Grcar, M.1    Lavrac, N.2
  • 27
    • 6944221626 scopus 로고    scopus 로고
    • Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization
    • Springer, Berlin
    • Griffith D (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Advances in spatial science. Springer, Berlin
    • (2003) Advances in spatial science
    • Griffith, D.1
  • 31
    • 84864558372 scopus 로고    scopus 로고
    • Exploring spatial dependence: Starting from the moran's i and the aple statistics
    • Jin F (2010) Exploring spatial dependence: starting from the Moran's I and the APLE statistics. In: 20th Annual Meetings of the Midwest Econometrics Group
    • (2010) 20th Annual Meetings of the Midwest Econometrics Group
    • Jin, F.1
  • 33
    • 0027881344 scopus 로고
    • Spatial autocorrelation: Trouble or new paradigm?
    • Legendre P (1993) Spatial autocorrelation: Trouble or new paradigm?. Ecology 74(6):1659-1673
    • (1993) Ecology , vol.74 , Issue.6 , pp. 1659-1673
    • Legendre, P.1
  • 34
    • 0009959012 scopus 로고    scopus 로고
    • Spatial dependence in data mining
    • Grossman R, Kamath C, Kegelmeyer P, Kumar V, Namburu R (eds) Kluwer Academic, Norwell
    • LeSage JH, Pace K (2001) Spatial dependence in data mining. In: Grossman R, Kamath C, Kegelmeyer P, Kumar V, Namburu R (eds) Data mining for scientific and engineering applications. Kluwer Academic, Norwell pp 439-460
    • (2001) Data mining for scientific and Engineering Applications , pp. 439-460
    • LeSage, J.H.1    Pace, K.2
  • 35
    • 34648851351 scopus 로고    scopus 로고
    • Beyond moran's i: Testing for spatial dependence based on the spatial autoregressive model
    • Li H, Calder CA, Cressie N (2007) Beyond Moran's I: Testing for spatial dependence based on the spatial autoregressive model. Geogr Anal 39(4):357-375
    • (2007) Geogr Anal , vol.39 , Issue.4 , pp. 357-375
    • Li, H.1    Calder, C.A.2    Cressie, N.3
  • 36
    • 50249179235 scopus 로고    scopus 로고
    • Coordinated workload scheduling in hierarchical sensor networks for data fusion applications
    • Li X, Kang H, Cao J (2007b) Coordinated workload scheduling in hierarchical sensor networks for data fusion applications. In: MASS, ACM, pp 1-9
    • (2007) MASS, ACM , pp. 1-9
    • Li, X.1    Kang, H.2    Cao, J.3
  • 37
    • 34249102504 scopus 로고    scopus 로고
    • Classification in networked data: A toolkit and a univariate case study
    • Macskassy S, Provost F (2007) Classification in networked data: A toolkit and a univariate case study.Mach Learn 8:935-983
    • (2007) Mach Learn , vol.8 , pp. 935-983
    • Macskassy, S.1    Provost, F.2
  • 39
    • 0035639140 scopus 로고    scopus 로고
    • Birds of a feather: Homophily in social networks
    • McPherson M, Smith-Lovin L, Cook J (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27:415-444
    • (2001) Annu Rev Sociol , vol.27 , pp. 415-444
    • McPherson, M.1    Smith-Lovin, L.2    Cook, J.3
  • 41
    • 0003046842 scopus 로고
    • Learning from observation: Conceptual clustering
    • Michalski RS, Carbonell JG, Mitchell TM (eds). Tioga, Palo Alto
    • Michalski RS, Stepp RE (1983) Learning from observation: conceptual clustering. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning: An artificial intelligence approach. Tioga, Palo Alto pp 331-364
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 331-364
    • Michalski, R.S.1    Stepp, R.E.2
  • 42
    • 33947664999 scopus 로고    scopus 로고
    • Relational dependency networks
    • Neville J, Jensen D (2007) Relational dependency networks. J Mach Learn Res 8:653-692
    • (2007) J Mach Learn Res , vol.8 , pp. 653-692
    • Neville, J.1    Jensen, D.2
  • 46
    • 0031410367 scopus 로고    scopus 로고
    • Quick computation of regression with a spatially autoregressive dependent variable
    • Pace P, Barry R (1997) Quick computation of regression with a spatially autoregressive dependent variable. Geogr Anal 29(3):232-247
    • (1997) Geogr Anal , vol.29 , Issue.3 , pp. 232-247
    • Pace, P.1    Barry, R.2
  • 48
    • 0005685575 scopus 로고
    • C4.5: Programs for machine learning
    • San Francisco
    • Quinlan RJ (1993) C4.5: programs for machine learning. Morgan Kauffmann, San Francisco
    • (1993) Morgan Kauffmann
    • Quinlan, R.J.1
  • 49
    • 84864539829 scopus 로고    scopus 로고
    • Predicting the functions of proteins in protein-protein interaction networks from global information
    • Rahmani H, Blockeel H, Bender A (2010) Predicting the functions of proteins in protein-protein interaction networks from global information. J Mach Learn Res 8:82-97
    • (2010) J Mach Learn Res , vol.8 , pp. 82-97
    • Rahmani, H.1    Blockeel, H.2    Bender, A.3
  • 50
    • 0000587872 scopus 로고    scopus 로고
    • On characterization of molecular attributes
    • Randic M (1998) On characterization of molecular attributes. Acta Chim Slovenica 45:239-252
    • (1998) Acta Chim Slovenica , vol.45 , pp. 239-252
    • Randic, M.1
  • 52
    • 79961177418 scopus 로고    scopus 로고
    • Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science
    • Steinhaeuser K, Chawla NV, Ganguly AR (2011) Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat Anal Data Min 4(5):497-511
    • (2011) Stat Anal Data Min , vol.4 , Issue.5 , pp. 497-511
    • Steinhaeuser, K.1    Chawla, N.V.2    Ganguly, A.R.3
  • 53
    • 80052404114 scopus 로고    scopus 로고
    • Network regression with predictive clustering trees
    • Springer
    • Stojanova D, Ceci M, Appice A, Dzeroski S (2011a) Network regression with predictive clustering trees. In: ECML/PKDD (3), Springer, pp 333-348
    • (2011) ECML/PKDD , vol.3 , pp. 333-348
    • Stojanova, D.1    Ceci, M.2    Appice, A.3    Dzeroski, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.