-
2
-
-
65349121788
-
Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study:5-year analysis of the EORTC-NCIC trial
-
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study:5-year analysis of the EORTC-NCIC trial. The Lancet Oncology. 2009; 10:459-466.
-
(2009)
The Lancet Oncology
, vol.10
, pp. 459-466
-
-
Stupp, R.1
Hegi, M.E.2
Mason, W.P.3
van den Bent, M.J.4
Taphoorn, M.J.5
Janzer, R.C.6
Ludwin, S.K.7
Allgeier, A.8
Fisher, B.9
Belanger, K.10
Hau, P.11
Brandes, A.A.12
Gijtenbeek, J.13
Marosi, C.14
Vecht, C.J.15
Mokhtari, K.16
-
3
-
-
84916620254
-
Palliative and supportive care for glioma patients
-
Walbert T, Chasteen K. Palliative and supportive care for glioma patients. Cancer Treat Res. 2015; 163:171-184.
-
(2015)
Cancer Treat Res
, vol.163
, pp. 171-184
-
-
Walbert, T.1
Chasteen, K.2
-
4
-
-
84921693637
-
Curcumin Differs from Tetrahydrocurcumin for Molecular Targets, Signaling Pathways and Cellular Responses
-
Aggarwal BB, Deb L, Prasad S. Curcumin Differs from Tetrahydrocurcumin for Molecular Targets, Signaling Pathways and Cellular Responses. Molecules. 2014; 20:185-205.
-
(2014)
Molecules
, vol.20
, pp. 185-205
-
-
Aggarwal, B.B.1
Deb, L.2
Prasad, S.3
-
5
-
-
84860887008
-
The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma
-
Zanotto-Filho A, Braganhol E, Edelweiss MI, Behr GA, Zanin R, Schroder R, Simoes-Pires A, Battastini AM, Moreira JC. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem. 2012; 23:591-601.
-
(2012)
J Nutr Biochem
, vol.23
, pp. 591-601
-
-
Zanotto-Filho, A.1
Braganhol, E.2
Edelweiss, M.I.3
Behr, G.A.4
Zanin, R.5
Schroder, R.6
Simoes-Pires, A.7
Battastini, A.M.8
Moreira, J.C.9
-
6
-
-
78650413780
-
Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1, 2/STAT3 signaling pathway
-
Weissenberger J, Priester M, Bernreuther C, Rakel S, Glatzel M, Seifert V, Kogel D. Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1, 2/STAT3 signaling pathway. Clinical cancer research. 2010; 16:5781-5795.
-
(2010)
Clinical cancer research
, vol.16
, pp. 5781-5795
-
-
Weissenberger, J.1
Priester, M.2
Bernreuther, C.3
Rakel, S.4
Glatzel, M.5
Seifert, V.6
Kogel, D.7
-
7
-
-
77950525326
-
Curcumin (diferuloylmethane) induces apoptosis and blocks migration of human medulloblastoma cells
-
Bangaru ML, Chen S, Woodliff J, Kansra S. Curcumin (diferuloylmethane) induces apoptosis and blocks migration of human medulloblastoma cells. Anticancer Res. 2010; 30:499-504.
-
(2010)
Anticancer Res
, vol.30
, pp. 499-504
-
-
Bangaru, M.L.1
Chen, S.2
Woodliff, J.3
Kansra, S.4
-
8
-
-
84916938355
-
Resveratrol potentiates the in vitro and in vivo anti-tumoral effects of curcumin in headand neck carcinomas
-
Masuelli L, Di Stefano E, Fantini M, Mattera R, Benvenuto M, Marzocchella L, Sacchetti P, Focaccetti C, Bernardini R, Tresoldi I, Izzi V, Mattei M, Frajese GV, ListaF, Modesti A, Bei R. Resveratrol potentiates the in vitro and in vivo anti-tumoral effects of curcumin in headand neck carcinomas. Oncotarget. 2014; 5:10745-10762.
-
(2014)
Oncotarget
, vol.5
, pp. 10745-10762
-
-
Masuelli, L.1
Di Stefano, E.2
Fantini, M.3
Mattera, R.4
Benvenuto, M.5
Marzocchella, L.6
Sacchetti, P.7
Focaccetti, C.8
Bernardini, R.9
Tresoldi, I.10
Izzi, V.11
Mattei, M.12
Frajese, G.V.13
Lista, F.14
Modesti, A.15
Bei, R.16
-
9
-
-
84903174400
-
Curcumin suppresses cell proliferation through inhibition of the Wnt/beta-catenin signaling pathway in medulloblastoma
-
He M, Li Y, Zhang L, Li L, Shen Y, Lin L, Zheng W, Chen L, Bian X, Ng HK, Tang L. Curcumin suppresses cell proliferation through inhibition of the Wnt/beta-catenin signaling pathway in medulloblastoma. Oncol Rep. 2014; 32:173-180.
-
(2014)
Oncol Rep
, vol.32
, pp. 173-180
-
-
He, M.1
Li, Y.2
Zhang, L.3
Li, L.4
Shen, Y.5
Lin, L.6
Zheng, W.7
Chen, L.8
Bian, X.9
Ng, H.K.10
Tang, L.11
-
10
-
-
84888206438
-
Curcumin suppresses malignant glioma cells growth and induces apoptosis by inhibition of SHH/GLI1 signaling pathway in vitro and vivo
-
Du WZ, Feng Y, Wang XF, Piao XY, Cui YQ, Chen LC, Lei XH, Sun X, Liu X, Wang HB, Li XF, Yang DB, Sun Y, Zhao ZF, Jiang T, Li YL, et al. Curcumin suppresses malignant glioma cells growth and induces apoptosis by inhibition of SHH/GLI1 signaling pathway in vitro and vivo. CNS Neurosci Ther. 2013; 19:926-936.
-
(2013)
CNS Neurosci Ther
, vol.19
, pp. 926-936
-
-
Du, W.Z.1
Feng, Y.2
Wang, X.F.3
Piao, X.Y.4
Cui, Y.Q.5
Chen, L.C.6
Lei, X.H.7
Sun, X.8
Liu, X.9
Wang, H.B.10
Li, X.F.11
Yang, D.B.12
Sun, Y.13
Zhao, Z.F.14
Jiang, T.15
Li, Y.L.16
-
11
-
-
84878434082
-
Epigenetic reactivation of RANK in glioblastoma cells by curcumin: involvement of STAT3 inhibition
-
Wu B, Yao X, Nie X, Xu R. Epigenetic reactivation of RANK in glioblastoma cells by curcumin: involvement of STAT3 inhibition. DNA Cell Biol. 2013; 32:292-297.
-
(2013)
DNA Cell Biol
, vol.32
, pp. 292-297
-
-
Wu, B.1
Yao, X.2
Nie, X.3
Xu, R.4
-
12
-
-
84870058719
-
Synergistic anti-cancer mechanisms of curcumin and paclitaxel for growth inhibition of human brain tumor stem cells and LN18 and U138MG cells
-
Hossain M, Banik NL, Ray SK. Synergistic anti-cancer mechanisms of curcumin and paclitaxel for growth inhibition of human brain tumor stem cells and LN18 and U138MG cells. Neurochem Int. 2012; 61:1102-1113.
-
(2012)
Neurochem Int
, vol.61
, pp. 1102-1113
-
-
Hossain, M.1
Banik, N.L.2
Ray, S.K.3
-
13
-
-
79955117246
-
Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo
-
Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer. 2011; 11:144.
-
(2011)
BMC Cancer
, vol.11
, pp. 144
-
-
Lee, S.J.1
Krauthauser, C.2
Maduskuie, V.3
Fawcett, P.T.4
Olson, J.M.5
Rajasekaran, S.A.6
-
14
-
-
79953852369
-
Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo
-
Spiller SE, Logsdon NJ, Deckard LA, Sontheimer H. Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo. BMC Cancer. 2011; 11:136.
-
(2011)
BMC Cancer
, vol.11
, pp. 136
-
-
Spiller, S.E.1
Logsdon, N.J.2
Deckard, L.A.3
Sontheimer, H.4
-
15
-
-
84897995252
-
Skp2: a dream target in the coming age of cancer therapy
-
Chan CH, Morrow JK, Zhang S, Lin HK. Skp2: a dream target in the coming age of cancer therapy. Cell Cycle. 2014; 13:679-680.
-
(2014)
Cell Cycle
, vol.13
, pp. 679-680
-
-
Chan, C.H.1
Morrow, J.K.2
Zhang, S.3
Lin, H.K.4
-
16
-
-
80053906629
-
Skp2: a novel potential therapeutic target for prostate cancer
-
18251
-
Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, Sarkar FH, Wei W. Skp2: a novel potential therapeutic target for prostate cancer. Biochim Biophys Acta. 2012; 18251:11-17.
-
(2012)
Biochim Biophys Acta
, pp. 11-17
-
-
Wang, Z.1
Gao, D.2
Fukushima, H.3
Inuzuka, H.4
Liu, P.5
Wan, L.6
Sarkar, F.H.7
Wei, W.8
-
17
-
-
84866854512
-
Skp2 is a promising therapeutic target in breast cancer
-
Wang Z, Fukushima H, Inuzuka H, Wan L, Liu P, Gao D, Sarkar FH, Wei W. Skp2 is a promising therapeutic target in breast cancer. Front Oncol. 2012; 1.
-
(2012)
Front Oncol
, pp. 1
-
-
Wang, Z.1
Fukushima, H.2
Inuzuka, H.3
Wan, L.4
Liu, P.5
Gao, D.6
Sarkar, F.H.7
Wei, W.8
-
18
-
-
84921783940
-
SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination
-
Lu W, Liu S, Li B, Xie Y, Adhiambo C, Yang Q, Ballard BR, Nakayama KI, Matusik RJ, Chen Z. SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination. Oncotarget. 2015; 6:771-788.
-
(2015)
Oncotarget
, vol.6
, pp. 771-788
-
-
Lu, W.1
Liu, S.2
Li, B.3
Xie, Y.4
Adhiambo, C.5
Yang, Q.6
Ballard, B.R.7
Nakayama, K.I.8
Matusik, R.J.9
Chen, Z.10
-
19
-
-
84925272879
-
Skp2-Dependent Ubiquitination and Activation of LKB1 Is Essential for Cancer Cell Survival under Energy Stress
-
Lee SW, Li CF, Jin G, Cai Z, Han F, Chan CH, Yang WL, Li BK, Rezaeian AH, Li HY, Huang HY, Lin HK. Skp2-Dependent Ubiquitination and Activation of LKB1 Is Essential for Cancer Cell Survival under Energy Stress. Mol Cell. 2015; 57:1022-1033.
-
(2015)
Mol Cell
, vol.57
, pp. 1022-1033
-
-
Lee, S.W.1
Li, C.F.2
Jin, G.3
Cai, Z.4
Han, F.5
Chan, C.H.6
Yang, W.L.7
Li, B.K.8
Rezaeian, A.H.9
Li, H.Y.10
Huang, H.Y.11
Lin, H.K.12
-
20
-
-
0032530151
-
Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1)and cyclin D proteins
-
Yu ZK, Gervais JL, Zhang H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1)and cyclin D proteins. Proc Natl Acad Sci U S A. 1998; 95:11324-11329.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 11324-11329
-
-
Yu, Z.K.1
Gervais, J.L.2
Zhang, H.3
-
21
-
-
0033578073
-
P27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27
-
Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol. 1999; 9:661-664.
-
(1999)
Curr Biol
, vol.9
, pp. 661-664
-
-
Tsvetkov, L.M.1
Yeh, K.H.2
Lee, S.J.3
Sun, H.4
Zhang, H.5
-
22
-
-
0041836324
-
Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation
-
Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, Hatakeyama S, Nakayama K, Nakayama KI. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci U S A. 2003; 100:10231-10236.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 10231-10236
-
-
Kamura, T.1
Hara, T.2
Kotoshiba, S.3
Yada, M.4
Ishida, N.5
Imaki, H.6
Hatakeyama, S.7
Nakayama, K.8
Nakayama, K.I.9
-
23
-
-
84863618431
-
Acetylation-dependent regulation of Skp2 function
-
Inuzuka H, Gao D, Finley LW, Yang W, Wan L, Fukushima H, Chin YR, Zhai B, Shaik S, Lau AW, Wang Z, Gygi SP, Nakayama K, Teruya-Feldstein J, TokerA, HaigisMC, et al. Acetylation-dependent regulation of Skp2 function. Cell. 2012; 150:179-193.
-
(2012)
Cell
, vol.150
, pp. 179-193
-
-
Inuzuka, H.1
Gao, D.2
Finley, L.W.3
Yang, W.4
Wan, L.5
Fukushima, H.6
Chin, Y.R.7
Zhai, B.8
Shaik, S.9
Lau, A.W.10
Wang, Z.11
Gygi, S.P.12
Nakayama, K.13
Teruya-Feldstein, J.14
Toker, A.15
Haigis, M.C.16
-
24
-
-
13444252337
-
Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation
-
Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A. 2005; 102:1649-1654.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 1649-1654
-
-
Huang, H.1
Regan, K.M.2
Wang, F.3
Wang, D.4
Smith, D.I.5
van Deursen, J.M.6
Tindall, D.J.7
-
26
-
-
84906232785
-
E3-ligase Skp2 predicts poor prognosis and maintains cancer stem cell pool in nasopharyngeal carcinoma
-
Wang J, Huang Y, Guan Z, Zhang JL, Su HK, Zhang W, Yue CF, Yan M, Guan S, Liu QQ. E3-ligase Skp2 predicts poor prognosis and maintains cancer stem cell pool in nasopharyngeal carcinoma. Oncotarget. 2014; 5:5591-5601.
-
(2014)
Oncotarget
, vol.5
, pp. 5591-5601
-
-
Wang, J.1
Huang, Y.2
Guan, Z.3
Zhang, J.L.4
Su, H.K.5
Zhang, W.6
Yue, C.F.7
Yan, M.8
Guan, S.9
Liu, Q.Q.10
-
27
-
-
64049087382
-
Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB
-
Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, Yang WL, Erdjument-Bromage H, Nakayama KI, Nimer S, Tempst P, Pandolfi PP. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol. 2009; 11:420-432.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 420-432
-
-
Lin, H.K.1
Wang, G.2
Chen, Z.3
Teruya-Feldstein, J.4
Liu, Y.5
Chan, C.H.6
Yang, W.L.7
Erdjument-Bromage, H.8
Nakayama, K.I.9
Nimer, S.10
Tempst, P.11
Pandolfi, P.P.12
-
28
-
-
77949741498
-
Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence
-
Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, Yang WL, Wang J, Egia A, Nakayama KI,Cordon-CardoC, Teruya-Feldstein J, Pandolfi PP. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 2010; 464:374-379.
-
(2010)
Nature
, vol.464
, pp. 374-379
-
-
Lin, H.K.1
Chen, Z.2
Wang, G.3
Nardella, C.4
Lee, S.W.5
Chan, C.H.6
Yang, W.L.7
Wang, J.8
Egia, A.9
Nakayama, K.I.10
Cordon-Cardo, C.11
Teruya-Feldstein, J.12
Pandolfi, P.P.13
-
29
-
-
84872812301
-
Identification of acetylation-dependent regulatory mechanisms that govern the oncogenic functions of Skp2
-
Wang Z, Inuzuka H, Zhong J, Liu P, Sarkar FH, Sun Y, Wei W. Identification of acetylation-dependent regulatory mechanisms that govern the oncogenic functions of Skp2. Oncotarget. 2012; 3:1294-1300.
-
(2012)
Oncotarget
, vol.3
, pp. 1294-1300
-
-
Wang, Z.1
Inuzuka, H.2
Zhong, J.3
Liu, P.4
Sarkar, F.H.5
Sun, Y.6
Wei, W.7
-
30
-
-
84861552793
-
The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis
-
Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, Huang HY, Tsai KK, Flores LG, Shao Y, Hazle JD, Yu D, Wei W, Sarbassov D, Hung MC, Nakayama KI, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012; 149:1098-1111.
-
(2012)
Cell
, vol.149
, pp. 1098-1111
-
-
Chan, C.H.1
Li, C.F.2
Yang, W.L.3
Gao, Y.4
Lee, S.W.5
Feng, Z.6
Huang, H.Y.7
Tsai, K.K.8
Flores, L.G.9
Shao, Y.10
Hazle, J.D.11
Yu, D.12
Wei, W.13
Sarbassov, D.14
Hung, M.C.15
Nakayama, K.I.16
-
31
-
-
84881192827
-
Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression
-
Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A, Stagg LJ, Ladbury JE, Cai Z, Xu D, Logothetis CJ, Hung MC, Zhang S, Lin HK. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell. 2013; 154:556-568.
-
(2013)
Cell
, vol.154
, pp. 556-568
-
-
Chan, C.H.1
Morrow, J.K.2
Li, C.F.3
Gao, Y.4
Jin, G.5
Moten, A.6
Stagg, L.J.7
Ladbury, J.E.8
Cai, Z.9
Xu, D.10
Logothetis, C.J.11
Hung, M.C.12
Zhang, S.13
Lin, H.K.14
-
32
-
-
84918822949
-
E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy
-
Hao Z, Huang S. E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy. Front Biosci (Landmark Ed). 2015; 20:474-490.
-
(2015)
Front Biosci (Landmark Ed)
, vol.20
, pp. 474-490
-
-
Hao, Z.1
Huang, S.2
-
33
-
-
0037047477
-
Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot
-
Schiffer D, Cavalla P, Fiano V, Ghimenti C, Piva R. Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neurosci Lett. 2002; 328:125-128.
-
(2002)
Neurosci Lett
, vol.328
, pp. 125-128
-
-
Schiffer, D.1
Cavalla, P.2
Fiano, V.3
Ghimenti, C.4
Piva, R.5
-
34
-
-
18744373874
-
Downregulation of Skp2 andp27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells
-
Lee SH, McCormick F. Downregulation of Skp2 andp27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med (Berl). 2005; 83:296-307.
-
(2005)
J Mol Med (Berl)
, vol.83
, pp. 296-307
-
-
Lee, S.H.1
McCormick, F.2
-
35
-
-
28444478038
-
Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated with poor prognosis of glioblastomas
-
Saigusa K, Hashimoto N, Tsuda H, Yokoi S, Maruno M, Yoshimine T, Aoyagi M, Ohno K, Imoto I, Inazawa J. Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated with poor prognosis of glioblastomas. Cancer Sci. 2005; 96:676-683.
-
(2005)
Cancer Sci
, vol.96
, pp. 676-683
-
-
Saigusa, K.1
Hashimoto, N.2
Tsuda, H.3
Yokoi, S.4
Maruno, M.5
Yoshimine, T.6
Aoyagi, M.7
Ohno, K.8
Imoto, I.9
Inazawa, J.10
-
36
-
-
84902993354
-
Brain tumor senescence might be mediated by downregulation of S-phase kinase-associated protein 2 via butylidenephthalide leading to decreased cell viability
-
Huang MH, Lin SZ, Lin PC, Chiou TW, Harn YW, Ho LI, Chan TM, Chou CW, Chuang CH, Su HL, Harn HJ. Brain tumor senescence might be mediated by downregulation of S-phase kinase-associated protein 2 via butylidenephthalide leading to decreased cell viability. Tumour biology. 2014; 35:4875-4884.
-
(2014)
Tumour biology
, vol.35
, pp. 4875-4884
-
-
Huang, M.H.1
Lin, S.Z.2
Lin, P.C.3
Chiou, T.W.4
Harn, Y.W.5
Ho, L.I.6
Chan, T.M.7
Chou, C.W.8
Chuang, C.H.9
Su, H.L.10
Harn, H.J.11
-
37
-
-
33746161135
-
Oncostatin M induces growth arrest by inhibition of Skp2, Cks1, and cyclin A expression and induced p21 expression
-
Halfter H, Friedrich M, Resch A, Kullmann M, Stogbauer F, Ringelstein EB, Hengst L. Oncostatin M induces growth arrest by inhibition of Skp2, Cks1, and cyclin A expression and induced p21 expression. Cancer Res. 2006; 66:6530-6539.
-
(2006)
Cancer Res
, vol.66
, pp. 6530-6539
-
-
Halfter, H.1
Friedrich, M.2
Resch, A.3
Kullmann, M.4
Stogbauer, F.5
Ringelstein, E.B.6
Hengst, L.7
-
38
-
-
47149092405
-
Targeting the p27 E3 ligase SCF(Skp2) results in p27-and Skp2-mediated cell-cycle arrest and activation of autophagy
-
Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L, Webb DR, Mercurio F, Nakayama KI, Nakayama K, Orlowski RZ. Targeting the p27 E3 ligase SCF(Skp2) results in p27-and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood. 2008; 111:4690-4699.
-
(2008)
Blood
, vol.111
, pp. 4690-4699
-
-
Chen, Q.1
Xie, W.2
Kuhn, D.J.3
Voorhees, P.M.4
Lopez-Girona, A.5
Mendy, D.6
Corral, L.G.7
Krenitsky, V.P.8
Xu, W.9
Moutouh-de Parseval, L.10
Webb, D.R.11
Mercurio, F.12
Nakayama, K.I.13
Nakayama, K.14
Orlowski, R.Z.15
-
39
-
-
79959262105
-
1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-23 and BT474 cells through downregulation of Skp2 protein
-
Huang HC, Lin CL, Lin JK. 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-23 and BT474 cells through downregulation of Skp2 protein. J Agric Food Chem. 2011; 59:6765-6775.
-
(2011)
J Agric Food Chem
, vol.59
, pp. 6765-6775
-
-
Huang, H.C.1
Lin, C.L.2
Lin, J.K.3
-
40
-
-
84988638032
-
The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway
-
Jia T, Zhang L, Duan Y, Zhang M, Wang G, Zhang J, Zhao Z. The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway. Cancer Cell Int. 2014; 14:126.
-
(2014)
Cancer Cell Int
, vol.14
, pp. 126
-
-
Jia, T.1
Zhang, L.2
Duan, Y.3
Zhang, M.4
Wang, G.5
Zhang, J.6
Zhao, Z.7
-
41
-
-
84864449369
-
Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin
-
Sun SH, Huang HC, Huang C, Lin JK. Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin. Eur J Pharmacol. 2012; 690:22-30.
-
(2012)
Eur J Pharmacol
, vol.690
, pp. 22-30
-
-
Sun, S.H.1
Huang, H.C.2
Huang, C.3
Lin, J.K.4
-
42
-
-
84927134815
-
Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1
-
Lin HP, Lin CY, Huo C, Hsiao PH, Su LC, Jiang SS, Chan TM, Chang CH, Chen LT, Kung HJ, Wang HD, Chuu CP. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1. Oncotarget. 2015.
-
(2015)
Oncotarget
-
-
Lin, H.P.1
Lin, C.Y.2
Huo, C.3
Hsiao, P.H.4
Su, L.C.5
Jiang, S.S.6
Chan, T.M.7
Chang, C.H.8
Chen, L.T.9
Kung, H.J.10
Wang, H.D.11
Chuu, C.P.12
-
43
-
-
64049086572
-
Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction
-
Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol. 2009; 11:397-408.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 397-408
-
-
Gao, D.1
Inuzuka, H.2
Tseng, A.3
Chin, R.Y.4
Toker, A.5
Wei, W.6
-
44
-
-
77953519397
-
A comparison between Skp2 and FOXO1 for their cytoplasmic localization by Akt1
-
Wang H, Cui J, Bauzon F, Zhu L. A comparison between Skp2 and FOXO1 for their cytoplasmic localization by Akt1. Cell Cycle. 2010; 9:1021-1022.
-
(2010)
Cell Cycle
, vol.9
, pp. 1021-1022
-
-
Wang, H.1
Cui, J.2
Bauzon, F.3
Zhu, L.4
-
45
-
-
77953486946
-
Skip the nucleus, AKT drives Skp2 and FOXO1 to the same place?
-
Zhang H. Skip the nucleus, AKT drives Skp2 and FOXO1 to the same place? Cell Cycle. 2010; 9:868-869.
-
(2010)
Cell Cycle
, vol.9
, pp. 868-869
-
-
Zhang, H.1
-
46
-
-
33645734725
-
FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells
-
Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, Aldape KD, Xie TX, Pelloski CE, Xie K, Sawaya R, Huang S. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 2006; 66:3593-3602.
-
(2006)
Cancer Res
, vol.66
, pp. 3593-3602
-
-
Liu, M.1
Dai, B.2
Kang, S.H.3
Ban, K.4
Huang, F.J.5
Lang, F.F.6
Aldape, K.D.7
Xie, T.X.8
Pelloski, C.E.9
Xie, K.10
Sawaya, R.11
Huang, S.12
-
47
-
-
84913548901
-
Inactivation of FoxM1 transcription factor contributes to curcumin-induced inhibition of survival, angiogenesis, and chemosensitivity in acute myeloid leukemia cells
-
Zhang JR, Lu F, Lu T, Dong WH, Li P, Liu N, Ma DX, Ji CY. Inactivation of FoxM1 transcription factor contributes to curcumin-induced inhibition of survival, angiogenesis, and chemosensitivity in acute myeloid leukemia cells. J Mol Med (Berl). 2014; 92:1319-1330.
-
(2014)
J Mol Med (Berl)
, vol.92
, pp. 1319-1330
-
-
Zhang, J.R.1
Lu, F.2
Lu, T.3
Dong, W.H.4
Li, P.5
Liu, N.6
Ma, D.X.7
Ji, C.Y.8
-
48
-
-
84908892976
-
Therapeutic applications of curcumin for patients with pancreatic cancer
-
Kanai M. Therapeutic applications of curcumin for patients with pancreatic cancer. World J Gastroenterol. 2014; 20:9384-9391.
-
(2014)
World J Gastroenterol
, vol.20
, pp. 9384-9391
-
-
Kanai, M.1
-
49
-
-
84921535683
-
Curcumin, a component of golden spice: From bedside to bench and back
-
Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv. 2014; 32:1053-1064.
-
(2014)
Biotechnol Adv
, vol.32
, pp. 1053-1064
-
-
Prasad, S.1
Gupta, S.C.2
Tyagi, A.K.3
Aggarwal, B.B.4
-
50
-
-
84893973489
-
Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice
-
Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014; 46:2-18.
-
(2014)
Cancer Res Treat
, vol.46
, pp. 2-18
-
-
Prasad, S.1
Tyagi, A.K.2
Aggarwal, B.B.3
-
51
-
-
84923296705
-
MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells
-
Yang Q, Wang Y, Lu X, Zhao Z, Zhu L, ChenS, Wu Q, ChenC, Wang Z. MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget. 2015; 6:3268-3279.
-
(2015)
Oncotarget
, vol.6
, pp. 3268-3279
-
-
Yang, Q.1
Wang, Y.2
Lu, X.3
Zhao, Z.4
Zhu, L.5
Chen, S.6
Wu, Q.7
Chen, C.8
Wang, Z.9
-
52
-
-
84922714354
-
Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells
-
Ma J, Fang B, Zeng F, Ma C, Pang H, Cheng L, Shi Y, Wang H, Yin B, Xia J, Wang Z. Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget. 2015; 6:1740-1749.
-
(2015)
Oncotarget
, vol.6
, pp. 1740-1749
-
-
Ma, J.1
Fang, B.2
Zeng, F.3
Ma, C.4
Pang, H.5
Cheng, L.6
Shi, Y.7
Wang, H.8
Yin, B.9
Xia, J.10
Wang, Z.11
|