메뉴 건너뛰기




Volumn 21, Issue 3, 2012, Pages 600-617

Wavelet-based LASSO in functional linear regression

Author keywords

Functional data analysis; Penalized linear regression; Variable selection; Wavelet regression

Indexed keywords


EID: 84865396790     PISSN: 10618600     EISSN: None     Source Type: Journal    
DOI: 10.1080/10618600.2012.679241     Document Type: Article
Times cited : (91)

References (38)
  • 1
    • 33644642688 scopus 로고    scopus 로고
    • Dimension Reduction in Functional Regression With Applications
    • [602,604,612,612]
    • Amato, U., Antoniadis, A., and De Feis, I. (2006), "Dimension Reduction in Functional Regression With Applications," Computational Statistics and Data Analysis, 50, 2422-2446.[602,604,612,612]
    • (2006) Computational Statistics and Data Analysis , vol.50 , pp. 2422-2446
    • Amato, U.1    Antoniadis, A.2    de Feis, I.3
  • 2
    • 1542469448 scopus 로고    scopus 로고
    • BayesianWavelet Regression on CurvesWith Application to a Spectroscopic Calibration Problem
    • [602,604]
    • Brown, P. J., Fearn, T., and Vannucci, M. (2001), "BayesianWavelet Regression on CurvesWith Application to a Spectroscopic Calibration Problem," Journal of the American Statistical Association, 96, 398-408.[602,604]
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 398-408
    • Brown, P.J.1    Fearn, T.2    Vannucci, M.3
  • 3
    • 33847349358 scopus 로고    scopus 로고
    • Prediction in Functional Linear Regression
    • [601]
    • Cai, T., and Hall, P. (2006), "Prediction in Functional Linear Regression," The Annals of Statistics, 34, 2159-2179.[601]
    • (2006) The Annals of Statistics , vol.34 , pp. 2159-2179
    • Cai, T.1    Hall, P.2
  • 5
    • 0041459525 scopus 로고    scopus 로고
    • Spline Estimators for the Functional Linear Model
    • [601,606,607]
    • Cai, T., and Hall, P. (2003), "Spline Estimators for the Functional Linear Model," Statistica Sinica, 13, 571-591.[601,606,607]
    • (2003) Statistica Sinica , vol.13 , pp. 571-591
    • Cai, T.1    Hall, P.2
  • 7
    • 0027530250 scopus 로고
    • SIMPLS: An Alternative Approach to Partial Least Squares Regression
    • [601]
    • de Jong, S. (1993), "SIMPLS: An Alternative Approach to Partial Least Squares Regression," Chemometrics and Intelligent Laboratory Systems, 18, 251-263.[601]
    • (1993) Chemometrics and Intelligent Laboratory Systems , vol.18 , pp. 251-263
    • de Jong, S.1
  • 8
    • 79951813381 scopus 로고    scopus 로고
    • Weighted Least Squares Methods for Prediction in the Functional Linear Model
    • [601]
    • Delaigle, A., Hall, P., and Apanasovich, T. V. (2009), "Weighted Least Squares Methods for Prediction in the Functional Linear Model," Electronic Journal of Statistics, 3, 865-885.[601]
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 865-885
    • Delaigle, A.1    Hall, P.2    Apanasovich, T.V.3
  • 9
    • 0041958932 scopus 로고
    • Ideal Spatial Adaptation via Wavelet Shrinkage
    • [606]
    • Donoho, D., and Johnstone, I. (1994), "Ideal Spatial Adaptation via Wavelet Shrinkage," Biometrika, 81, 425-455.[606]
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 11
    • 0345491393 scopus 로고    scopus 로고
    • Functional Sliced Inverse Regression Analysis
    • [601]
    • Ferre, L., and Yao, A. F. (2003), "Functional Sliced Inverse Regression Analysis," Statistics, 37, 475-488.[601]
    • (2003) Statistics , vol.37 , pp. 475-488
    • Ferre, L.1    Yao, A.F.2
  • 13
    • 35348874516 scopus 로고    scopus 로고
    • Methodology and Convergence Rates for Functional Linear Regression
    • [601]
    • Hall, P., and Horowitz, J. L. (2007), "Methodology and Convergence Rates for Functional Linear Regression," The Annals of Statistics, 35, 70-91.[601]
    • (2007) The Annals of Statistics , vol.35 , pp. 70-91
    • Hall, P.1    Horowitz, J.L.2
  • 14
    • 0001699048 scopus 로고    scopus 로고
    • Principal Component Models for Sparse FunctionalData
    • [601]
    • James, G., Hastie, T., and Sugar, C. (2000), "Principal Component Models for Sparse FunctionalData," Biometrika, 87, 587-602.[601]
    • (2000) Biometrika , vol.87 , pp. 587-602
    • James, G.1    Hastie, T.2    Sugar, C.3
  • 15
    • 69049090897 scopus 로고    scopus 로고
    • Functional Linear Regression That's Interpretable
    • [601]
    • James, G., Wang, J., and Zhu, J. (2009), "Functional Linear Regression That's Interpretable," The Annals of Statistics, 37, 2083-2108.[601]
    • (2009) The Annals of Statistics , vol.37 , pp. 2083-2108
    • James, G.1    Wang, J.2    Zhu, J.3
  • 17
    • 0024700097 scopus 로고
    • A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
    • [603]
    • Mallat, S. G. (1989), "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674-693.[603]
    • (1989) IEEE Transactions On Pattern Analysis and Machine Intelligence , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 18
    • 77956637967 scopus 로고    scopus 로고
    • Wavelet-Based Functional Linear Mixed Models: An Application to Measurement Error-Corrected Distributed Lag Models
    • [602]
    • Malloy, E., Morris, J., Adar, S., Suh, H., Gold, D., and Coull, B. (2010), "Wavelet-Based Functional Linear Mixed Models: An Application to Measurement Error-Corrected Distributed Lag Models," Biostatistics, 11, 432-452.[602]
    • (2010) Biostatistics , vol.11 , pp. 432-452
    • Malloy, E.1    Morris, J.2    Adar, S.3    Suh, H.4    Gold, D.5    Coull, B.6
  • 19
    • 0000957593 scopus 로고
    • Principal Components Regression in Exploratory Statistical Research
    • [601]
    • Massy, W. F. (1965), "Principal Components Regression in Exploratory Statistical Research," Journal of the American Statistical Association, 60, 234-256.[601]
    • (1965) Journal of the American Statistical Association , vol.60 , pp. 234-256
    • Massy, W.F.1
  • 20
    • 0033079479 scopus 로고    scopus 로고
    • Generalized Linear Regression for Sampled Signals or Curves: A P-Spline Approach
    • [601]
    • Marx, B. D., and Eilers, P. H. C. (1999), "Generalized Linear Regression for Sampled Signals or Curves: A P-Spline Approach," Technometrics, 41, 1-13.[601]
    • (1999) Technometrics , vol.41 , pp. 1-13
    • Marx, B.D.1    Eilers, P.H.C.2
  • 21
    • 65349193793 scopus 로고    scopus 로고
    • LASSO-Type Recovery of Sparse Representations for High-dimensional Data
    • [613]
    • Meinshausen, N., and Yu, B. (2009), "LASSO-Type Recovery of Sparse Representations for High-dimensional Data," The Annals of Statistics, 37, 246-270.[613]
    • (2009) The Annals of Statistics , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 22
  • 25
    • 10444224710 scopus 로고    scopus 로고
    • Hybrid Local Polynomial Wavelet Shrinkage: Wavelet Regression With Automatic Boundary Adjustment
    • [614]
    • Oh, H., and Lee, T. (2005), "Hybrid Local Polynomial Wavelet Shrinkage: Wavelet Regression With Automatic Boundary Adjustment," Computational Statistics & Data Analysis, 48, 809-819.[614]
    • (2005) Computational Statistics & Data Analysis , vol.48 , pp. 809-819
    • Oh, H.1    Lee, T.2
  • 26
    • 0034215549 scopus 로고    scopus 로고
    • A New Approach to Variable Selection in Least Squares Problems
    • [604]
    • Osborne, M. R., Presnell, B., and Turlach, B. A. (2000), "A New Approach to Variable Selection in Least Squares Problems," IMA Journal of Numerical Analysis, 20, 389-404.[604]
    • (2000) IMA Journal of Numerical Analysis , vol.20 , pp. 389-404
    • Osborne, M.R.1    Presnell, B.2    Turlach, B.A.3
  • 28
    • 35348906983 scopus 로고    scopus 로고
    • Functional Principal Component Regression and Functional Partial Least Squares
    • [601]
    • Reiss, P. T., and Ogden, R. T. (2007), "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, 102, 984-996.[601]
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 984-996
    • Reiss, P.T.1    Ogden, R.T.2
  • 29
    • 62849093921 scopus 로고    scopus 로고
    • Smoothing Parameter Selection for a Class of Semiparametric Linear Models
    • [607]
    • Reiss, P. T., and Ogden, R. T. (2009), "Smoothing Parameter Selection for a Class of Semiparametric Linear Models," Journal of the Royal Statistical Society, Series B, 71, 505-523.[607]
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , pp. 505-523
    • Reiss, P.T.1    Ogden, R.T.2
  • 30
    • 50249150500 scopus 로고    scopus 로고
    • Potential Applications of Functional Data Analysis in Chemometrics
    • [601]
    • Saeys, W., Ketelaere, B., and Darius, P. (2008), "Potential Applications of Functional Data Analysis in Chemometrics," Journal of Chemometrics, 22, 335-344.[601]
    • (2008) Journal of Chemometrics , vol.22 , pp. 335-344
    • Saeys, W.1    Ketelaere, B.2    Darius, P.3
  • 31
    • 0029754435 scopus 로고    scopus 로고
    • A Review of Bayesian Neural Networks With an Application to Near Infrared Spectroscopy
    • [609]
    • Thodberg, H. H. (1996), "A Review of Bayesian Neural Networks With an Application to Near Infrared Spectroscopy," IEEE Transactions on Neural Networks, 7, 56-72.[609]
    • (1996) IEEE Transactions On Neural Networks , vol.7 , pp. 56-72
    • Thodberg, H.H.1
  • 35
    • 0002692783 scopus 로고
    • Soft Modeling by Latent Variables: The Nonlinear Iterative Partial Least Squares Approach
    • ed. J. Gani, London: Academic Press, [601]
    • Wold, H. (1975), "Soft Modeling by Latent Variables: The Nonlinear Iterative Partial Least Squares Approach," in Perspectives in Probability and Statistics, Papers in Honour of M.S. Bartlett, ed. J. Gani, London: Academic Press, pp. 117-142.[601]
    • (1975) Perspectives In Probability and Statistics, Papers In Honour of M.S. Bartlett , pp. 117-142
    • Wold, H.1
  • 37
    • 50949096321 scopus 로고    scopus 로고
    • The Sparsity and Bias of the LASSO Selection in High Dimensional Linear Regression
    • [613]
    • Zhang, C., and Huang, J. (2008), "The Sparsity and Bias of the LASSO Selection in High Dimensional Linear Regression," The Annals of Statistics, 36, 1567-1594.[613]
    • (2008) The Annals of Statistics , vol.36 , pp. 1567-1594
    • Zhang, C.1    Huang, J.2
  • 38
    • 34548536008 scopus 로고    scopus 로고
    • On the "Degrees of Freedom" of the LASSO
    • [615]
    • Zou, H., Hastie, T., and Tibshirani, R. (2007), "On the "Degrees of Freedom" of the LASSO," The Annals of Statistics, 35, 2173-2192.[615]
    • (2007) The Annals of Statistics , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.