메뉴 건너뛰기




Volumn 40, Issue 1, 2012, Pages 322-352

Methodology and theory for partial least squares applied to functional data

Author keywords

Central limit theorem; Computational algorithm; Consistency; Convergence rates; Functional linear models; Generalized Fourier basis; Principal components; Projection; Stochastic expansion

Indexed keywords


EID: 84870678371     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-AOS958     Document Type: Article
Times cited : (115)

References (35)
  • 1
    • 78650523483 scopus 로고    scopus 로고
    • Using basis expansions for estimating functional PLS regression: Applications with chemometric data
    • AGUILERA, M., ESCABIASA, M., PREDA, C. and SAPORTA, G. (2010). Using basis expansions for estimating functional PLS regression: Applications with chemometric data. Chemom. Intell. Lab. 104 289-305.
    • (2010) Chemom. Intell. Lab. , vol.104 , pp. 289-305
    • Aguilera, M.1    Escabiasa, M.2    Preda, C.3    Saporta, G.4
  • 2
    • 49649107528 scopus 로고    scopus 로고
    • On prediction error in functional linear regression
    • MR25285522
    • APANASOVICH, T. V. and GOLDSTEIN, E. (2008). On prediction error in functional linear regression. Statist. Probab. Lett. 78 1807-1810. MR25285522
    • (2008) Statist. Probab. Lett. , vol.78 , pp. 1807-1810
    • Apanasovich, T.V.1    Goldstein, E.2
  • 3
    • 84871188308 scopus 로고    scopus 로고
    • A note on functional linear regression
    • MR25230188
    • BAILLO, A. (2009). A note on functional linear regression. J. Stat. Comput. Simul. 79 657-669. MR25230188
    • (2009) J. Stat. Comput. Simul. , vol.79 , pp. 657-669
    • Baillo, A.1
  • 4
    • 79956285255 scopus 로고    scopus 로고
    • The smallest eigenvalue of Hankel matrices
    • MR27960933
    • BERG, C. and SZWARC, R. (2011). The smallest eigenvalue of Hankel matrices. Constr. Approx. 34 107-133. MR27960933
    • (2011) Constr. Approx. , vol.34 , pp. 107-133
    • Berg, C.1    Szwarc, R.2
  • 5
    • 60149105339 scopus 로고    scopus 로고
    • PLS works
    • BRO, R. and ELDÉN, L. (2009). PLS works. J. Chemom. 23 69-71.
    • (2009) J. Chemom. , vol.23 , pp. 69-71
    • Bro, R.1    Eldén, L.2
  • 6
    • 33847349358 scopus 로고    scopus 로고
    • Prediction in functional linear regression
    • MR22914966
    • CAI, T. T. and HALL, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159- 2179. MR22914966
    • (2006) Ann. Statist. , vol.34 , pp. 2159-2179
    • Cai, T.T.1    Hall, P.2
  • 7
    • 51149086405 scopus 로고    scopus 로고
    • Varying-coefficient functional linear regression models
    • MR24677600
    • CARDOT, H. and SARDA, P. (2008). Varying-coefficient functional linear regression models. Comm. Statist. Theory Methods 37 3186-3203. MR24677600
    • (2008) Comm. Statist. Theory Methods , vol.37 , pp. 3186-3203
    • Cardot, H.1    Sarda, P.2
  • 8
    • 84858298016 scopus 로고    scopus 로고
    • Achieving near-perfect classification for functional data
    • DELAIGLE, A. and HALL, P. (2012). Achieving near-perfect classification for functional data. J. Roy. Statist. Soc. Ser. B 74 267-286.
    • (2012) J. Roy. Statist. Soc. Ser. B , vol.74 , pp. 267-286
    • Delaigle, A.1    Hall, P.2
  • 9
    • 0031323122 scopus 로고    scopus 로고
    • Additive splines for partial least squares regression
    • MR16152644
    • DURAND, J.-F. and SABATIER, R. (1997). Additive splines for partial least squares regression. J. Amer. Statist. Assoc. 92 1546-1554. MR16152644
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 1546-1554
    • Durand, J.-F.1    Sabatier, R.2
  • 12
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools (with discussion)
    • FRANK, I. E. and FRIEDMAN, J. H. (1993). A statistical view of some chemometrics regression tools (with discussion). Technometrics 35 109-148.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 13
    • 21344479527 scopus 로고
    • An interpretation of partial least squares
    • MR12662900
    • GARTHWAITE, P. H. (1994). An interpretation of partial least squares. J. Amer. Statist. Assoc. 89 122-127. MR12662900
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 122-127
    • Garthwaite, P.H.1
  • 14
    • 0030539889 scopus 로고    scopus 로고
    • Partial least squares regression on smooth factors
    • MR13957300
    • GOUTIS, C. and FEARN, T. (1996). Partial least squares regression on smooth factors. J. Amer. Statist. Assoc. 91 627-632. MR13957300
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 627-632
    • Goutis, C.1    Fearn, T.2
  • 16
    • 0000656711 scopus 로고
    • Partial least squares regression and statistical models
    • MR10859244
    • HELLAND, I. S. (1990). Partial least squares regression and statistical models. Scand. J. Stat. 17 97-114. MR10859244
    • (1990) Scand. J. Stat. , vol.17 , pp. 97-114
    • Helland, I.S.1
  • 17
    • 85162676194 scopus 로고
    • PLS regression methods
    • HÖSKULDSSON, A. (1988). PLS regression methods. J. Chemom. 2 211-228.
    • (1988) J. Chemom. , vol.2 , pp. 211-228
    • Höskuldsson, A.1
  • 18
    • 15844370148 scopus 로고    scopus 로고
    • Evaluation of some Hankel determinants
    • MR21290000
    • HOU, Q.-H., LASCOUX, A. and MU, Y.-P. (2005). Evaluation of some Hankel determinants. Adv. in Appl. Math. 34 845-852. MR21290000
    • (2005) Adv. in Appl. Math. , vol.34 , pp. 845-852
    • Hou, Q.-H.1    Lascoux, A.2    Mu, Y.-P.3
  • 19
    • 50249088015 scopus 로고    scopus 로고
    • Penalized partial least squares with applications to B-spline transformations and functional data
    • KRÄMER, N., BOULESTEIX, A. L. and TUTZ, G. (2008). Penalized partial least squares with applications to B-spline transformations and functional data. Chemom. Intell. Lab. 94 60-69.
    • (2008) Chemom. Intell. Lab. , vol.94 , pp. 60-69
    • Krämer, N.1    Boulesteix, A.L.2    Tutz, G.3
  • 20
    • 79960116378 scopus 로고    scopus 로고
    • The degrees of freedom of partial least squares regression
    • KRÄMER, N. and SUGIYAMA, M. (2011). The degrees of freedom of partial least squares regression. J. Amer. Statist. Assoc. 106 697-705.
    • (2011) J. Amer. Statist. Assoc. , vol.106 , pp. 697-705
    • Krämer, N.1    Sugiyama, M.2
  • 22
    • 0141597569 scopus 로고
    • Inversion des matrices de Hankel
    • MR10530544
    • LASCOUX, A. (1990). Inversion des matrices de Hankel. Linear Algebra Appl. 129 77-102. MR10530544
    • (1990) Linear Algebra Appl. , vol.129 , pp. 77-102
    • Lascoux, A.1
  • 23
    • 85151711359 scopus 로고
    • A theoretical foundation for the PLS algorithm
    • LORBER, A., WANGEN, L. E. and KOWALSKI, B. R. (1987). A theoretical foundation for the PLS algorithm. J. Chemom. 1 19-31.
    • (1987) J. Chemom. , vol.1 , pp. 19-31
    • Lorber, A.1    Wangen, L.E.2    Kowalski, B.R.3
  • 25
    • 78651315755 scopus 로고    scopus 로고
    • Additive modelling of functional gradients
    • MR27461522
    • MÜLLER, H.-G. and YAO, F. (2010). Additive modelling of functional gradients. Biometrika 97 791-805. MR27461522
    • (2010) Biometrika , vol.97 , pp. 791-805
    • Müller, H.-G.1    Yao, F.2
  • 26
    • 2642537531 scopus 로고    scopus 로고
    • On partial least squares dimension reduction for microarray-based classification: A simulation study
    • MR20670300
    • NGUYEN, D. V. and ROCKE, D. M. (2004). On partial least squares dimension reduction for microarray-based classification: A simulation study. Comput. Statist. Data Anal. 46 407-425. MR20670300
    • (2004) Comput. Statist. Data Anal. , vol.46 , pp. 407-425
    • Nguyen, D.V.1    Rocke, D.M.2
  • 27
    • 0036062572 scopus 로고    scopus 로고
    • Exploiting the connection between PLS, Lanczos, and conjugate gradients: Alternative proofs of some properties of PLS
    • PHATAK, A. and DE HOOG, F. (2003). Exploiting the connection between PLS, Lanczos, and conjugate gradients: Alternative proofs of some properties of PLS. J. Chemom. 16 361-367.
    • (2003) J. Chemom. , vol.16 , pp. 361-367
    • Phatak, A.1    De Hoog, F.2
  • 28
    • 33745855877 scopus 로고    scopus 로고
    • The asymptotic variance of the univariate PLS estimator
    • MR19276600
    • PHATAK, A., REILLY, P. M. and PENLIDIS, A. (2002). The asymptotic variance of the univariate PLS estimator. Linear Algebra Appl. 354 245-253. MR19276600
    • (2002) Linear Algebra Appl. , vol.354 , pp. 245-253
    • Phatak, A.1    Reilly, P.M.2    Penlidis, A.3
  • 29
    • 10144244015 scopus 로고    scopus 로고
    • PLS regression on a stochastic process
    • MR21344888
    • PREDA, C. and SAPORTA, G. (2005a). PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 149-158. MR21344888
    • (2005) Comput. Statist. Data Anal. , vol.48 , pp. 149-158
    • Preda, C.1    Saporta, G.2
  • 30
    • 13644261749 scopus 로고    scopus 로고
    • Clusterwise PLS regression on a stochastic process
    • MR21291677
    • PREDA, C. and SAPORTA, G. (2005b). Clusterwise PLS regression on a stochastic process. Comput. Statist. Data Anal. 49 99-108. MR21291677
    • (2005) Comput. Statist. Data Anal. , vol.49 , pp. 99-108
    • Preda, C.1    Saporta, G.2
  • 31
    • 34347222890 scopus 로고    scopus 로고
    • PLS classification of functional data
    • MR23184577
    • PREDA, C., SAPORTA, G. and LÉVÉDER, C. (2007). PLS classification of functional data. Comput. Statist. 22 223-235. MR23184577
    • (2007) Comput. Statist. , vol.22 , pp. 223-235
    • Preda, C.1    Saporta, G.2    Lévéder, C.3
  • 32
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • MR24116600
    • REISS, P. T. and OGDEN, R. T. (2007). Functional principal component regression and functional partial least squares. J. Amer. Statist. Assoc. 102 984-996. MR24116600
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 984-996
    • Reiss, P.T.1    Ogden, R.T.2
  • 33
    • 0002692783 scopus 로고
    • Soft modelling by latent variables: The non-linear iterative partial least squares (NIPALS) approach
    • (J. Gani, ed.). Academic Press, London
    • WOLD, H. (1975). Soft modelling by latent variables: The non-linear iterative partial least squares (NIPALS) approach. In Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett (J. Gani, ed.). Academic Press, London.
    • (1975) Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett
    • Wold, H.1
  • 34
    • 77957570766 scopus 로고    scopus 로고
    • Varying-coefficient functional linear regression
    • MR27306466
    • WU, Y., FAN, J. and MÜLLER, H.-G. (2010). Varying-coefficient functional linear regression. Bernoulli 16 730-758. MR27306466
    • (2010) Bernoulli , vol.16 , pp. 730-758
    • Y, W.U.1    Fan, J.2    Müller, H.-G.3
  • 35
    • 77249159873 scopus 로고    scopus 로고
    • Functional quadratic regression
    • MR25944166
    • YAO, F. and MÜLLER, H.-G. (2010). Functional quadratic regression. Biometrika 97 49-64. MR25944166
    • (2010) Biometrika , vol.97 , pp. 49-64
    • Yao, F.1    Müller, H.-G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.