메뉴 건너뛰기




Volumn 25, Issue 5, 2015, Pages 863-875

Sparse estimation via nonconcave penalized likelihood in factor analysis model

Author keywords

Coordinate descent algorithm; Factor analysis; Nonconvex penalty; Penalized likelihood; Rotation technique

Indexed keywords


EID: 84938416978     PISSN: 09603174     EISSN: 15731375     Source Type: Journal    
DOI: 10.1007/s11222-014-9458-0     Document Type: Article
Times cited : (57)

References (53)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akademiai Kiado, Budapest
    • Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (eds.) 2nd International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1    Petrov, B.N.2    Csaki, F.3
  • 2
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H.: Factor analysis and AIC. Psychometrika 52(3), 317–332 (1987)
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 317-332
    • Akaike, H.1
  • 4
    • 84871198733 scopus 로고    scopus 로고
    • Statistical analysis of factor models of high dimension
    • Bai, J., Li, K.: Statistical analysis of factor models of high dimension. Ann. Stat. 40(1), 436–465 (2012)
    • (2012) Ann. Stat. , vol.40 , Issue.1 , pp. 436-465
    • Bai, J.1    Li, K.2
  • 6
    • 34250108028 scopus 로고
    • Model selection and akaike’s information criterion (AIC): the general theory and its analytical extensions
    • Bozdogan, H.: Model selection and akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52(3), 345–370 (1987)
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 7
    • 80053013888 scopus 로고    scopus 로고
    • Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
    • Breheny, P., Huang, J.: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl. Stat. 5(1), 232 (2011)
    • (2011) Ann. Appl. Stat. , vol.5 , Issue.1 , pp. 232
    • Breheny, P.1    Huang, J.2
  • 8
    • 84938426412 scopus 로고    scopus 로고
    • Selecting the correct number of factors in approximate factor models: the large panel case with bridge estimators
    • Caner, M.: Selecting the correct number of factors in approximate factor models: the large panel case with bridge estimators. Technical report. (2011)
    • (2011) Technical report
    • Caner, M.1
  • 9
    • 62549125109 scopus 로고    scopus 로고
    • West M High-dimensional sparse factor modeling: applications in gene expression genomics
    • Carvalho, C.M., Chang, J., Lucas, J.E., Nevins, J.R., Wang, Q.: West M High-dimensional sparse factor modeling: applications in gene expression genomics. J. American Stat. Assoc. 103(484), 1438–1456 (2008)
    • (2008) J. American Stat. Assoc. , vol.103 , Issue.484 , pp. 1438-1456
    • Carvalho, C.M.1    Chang, J.2    Lucas, J.E.3    Nevins, J.R.4    Wang, Q.5
  • 10
    • 50949108781 scopus 로고    scopus 로고
    • Extended bayesian information criteria for model selection with large model spaces
    • Chen, J., Chen, Z.: Extended bayesian information criteria for model selection with large model spaces. Biometrika 95(3), 759–771 (2008)
    • (2008) Biometrika , vol.95 , Issue.3 , pp. 759-771
    • Chen, J.1    Chen, Z.2
  • 11
    • 84860701893 scopus 로고    scopus 로고
    • A penalized maximum likelihood approach to sparse factor analysis
    • Choi, J., Zou, H., Oehlert, G.: A penalized maximum likelihood approach to sparse factor analysis. Stat. Interface 3(4), 429–436 (2011)
    • (2011) Stat. Interface , vol.3 , Issue.4 , pp. 429-436
    • Choi, J.1    Zou, H.2    Oehlert, G.3
  • 12
    • 85004802191 scopus 로고
    • A rapidly convergent method for maximum-likelihood factor analysis
    • Clarke, M.: A rapidly convergent method for maximum-likelihood factor analysis. British J. Math. Stat. Psychol. 23(1), 43–52 (1970)
    • (1970) British J. Math. Stat. Psychol. , vol.23 , Issue.1 , pp. 43-52
    • Clarke, M.1
  • 13
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron, B.: How biased is the apparent error rate of a prediction rule? J. American Stat. Assoc. 81, 461–470 (1986)
    • (1986) J. American Stat. Assoc. , vol.81 , pp. 461-470
    • Efron, B.1
  • 14
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: covariance penalties and cross-validation
    • Efron, B.: The estimation of prediction error: covariance penalties and cross-validation. J. American Stat. Assoc. 99, 619–642 (2004)
    • (2004) J. American Stat. Assoc. , vol.99 , pp. 619-642
    • Efron, B.1
  • 16
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. American Stat. Assoc. 96, 1348–1360 (2001)
    • (2001) J. American Stat. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 17
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank, I., Friedman, J.: A statistical view of some chemometrics regression tools. Technometrics 35, 109–148 (1993)
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.1    Friedman, J.2
  • 19
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)
    • (2010) J. Stat. Softw. , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 20
    • 84862556734 scopus 로고    scopus 로고
    • Fast sparse regression and classification
    • Friedman, J.: Fast sparse regression and classification. Int. J. Forecast. 28(3), 722–738 (2012)
    • (2012) Int. J. Forecast. , vol.28 , Issue.3 , pp. 722-738
    • Friedman, J.1
  • 21
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regression: the bridge versus the lasso
    • Fu, W.: Penalized regression: the bridge versus the lasso. J. Comput. Graph. Stat. 7, 397–416 (1998)
    • (1998) J. Comput. Graph. Stat. , vol.7 , pp. 397-416
    • Fu, W.1
  • 22
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391–1415 (2004)
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 23
    • 84977687187 scopus 로고
    • Promax: a quick method for rotation to oblique simple structure
    • Hendrickson, A., White, P.: Promax: a quick method for rotation to oblique simple structure. British J. Stat. Psychol. 17(1), 65–70 (1964)
    • (1964) British J. Stat. Psychol. , vol.17 , Issue.1 , pp. 65-70
    • Hendrickson, A.1    White, P.2
  • 24
    • 84861211116 scopus 로고    scopus 로고
    • Variable selection via the weighted group lasso for factor analysis models
    • Hirose, K., Konishi, S.: Variable selection via the weighted group lasso for factor analysis models. Canadian J. Stat. 40(2), 345–361 (2012)
    • (2012) Canadian J. Stat. , vol.40 , Issue.2 , pp. 345-361
    • Hirose, K.1    Konishi, S.2
  • 25
    • 84938426413 scopus 로고    scopus 로고
    • Tuning parameter selection in sparse regression modeling. Comput. Stat
    • Hirose, K., Tateishi, S., Konishi, S.: Tuning parameter selection in sparse regression modeling. Comput. Stat. Data Anal. (2012)
    • (2012) Data Anal
    • Hirose, K.1    Tateishi, S.2    Konishi, S.3
  • 26
    • 10044252913 scopus 로고    scopus 로고
    • Rotation to simple loadings using component loss functions: the orthogonal case
    • Jennrich, R.: Rotation to simple loadings using component loss functions: the orthogonal case. Psychometrika 69(2), 257–273 (2004)
    • (2004) Psychometrika , vol.69 , Issue.2 , pp. 257-273
    • Jennrich, R.1
  • 27
    • 33744994325 scopus 로고    scopus 로고
    • Rotation to simple loadings using component loss functions: the oblique case
    • Jennrich, R.: Rotation to simple loadings using component loss functions: the oblique case. Psychometrika 71(1), 173–191 (2006)
    • (2006) Psychometrika , vol.71 , Issue.1 , pp. 173-191
    • Jennrich, R.1
  • 28
    • 0041906877 scopus 로고
    • A Newton–Raphson algorithm for maximum likelihood factor analysis
    • Jennrich, R., Robinson, S.: A Newton–Raphson algorithm for maximum likelihood factor analysis. Psychometrika 34(1), 111–123 (1969)
    • (1969) Psychometrika , vol.34 , Issue.1 , pp. 111-123
    • Jennrich, R.1    Robinson, S.2
  • 29
    • 0001766512 scopus 로고
    • Some contributions to maximum likelihood factor analysis
    • Jöreskog, K.: Some contributions to maximum likelihood factor analysis. Psychometrika 32(4), 443–482 (1967)
    • (1967) Psychometrika , vol.32 , Issue.4 , pp. 443-482
    • Jöreskog, K.1
  • 30
    • 34250922831 scopus 로고
    • The varimax criterion for analytic rotation in factor analysis
    • Kaiser, H.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3), 187–200 (1958)
    • (1958) Psychometrika , vol.23 , Issue.3 , pp. 187-200
    • Kaiser, H.1
  • 31
    • 64249141055 scopus 로고    scopus 로고
    • On the segrees of dreedom in shrinkage estimation
    • Kato, K.: On the segrees of dreedom in shrinkage estimation. J. Multivar. Anal. 100, 1338–1352 (2009)
    • (2009) J. Multivar. Anal. , vol.100 , pp. 1338-1352
    • Kato, K.1
  • 32
    • 21844492344 scopus 로고
    • Simplimax, oblique rotation to an optimal target with simple structure
    • Kiers, H.A.: Simplimax, oblique rotation to an optimal target with simple structure. Psychometrika 59(4), 567–579 (1994)
    • (1994) Psychometrika , vol.59 , Issue.4 , pp. 567-579
    • Kiers, H.A.1
  • 33
    • 80052694528 scopus 로고    scopus 로고
    • Sparsenet: coordinate descent with nonconvex penalties
    • Mazumder, R., Friedman, J., Hastie, T.: Sparsenet: coordinate descent with nonconvex penalties. J. American Stat. Assoc. 106, 1125–1138 (2011)
    • (2011) J. American Stat. Assoc. , vol.106 , pp. 1125-1138
    • Mazumder, R.1    Friedman, J.2    Hastie, T.3
  • 36
    • 84938426414 scopus 로고    scopus 로고
    • R Development Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (2010), ISBN 3-900051-07-0
    • R Development Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2010), ISBN 3-900051-07-0
  • 37
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin, D., Thayer, D.: EM algorithms for ML factor analysis. Psychometrika 47(1), 69–76 (1982)
    • (1982) Psychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 38
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • Schwarz, G.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9, 1135–1151 (1978)
    • (1978) Ann. Stat. , vol.9 , pp. 1135-1151
    • Schwarz, G.1
  • 39
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictors
    • Stock, J.H., Watson, M.W.: Forecasting using principal components from a large number of predictors. J. American Stat. Assoc. 97(460), 1167–1179 (2002)
    • (2002) J. American Stat. Assoc. , vol.97 , Issue.460 , pp. 1167-1179
    • Stock, J.H.1    Watson, M.W.2
  • 41
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B 58, 267–288 (1996)
    • (1996) J. Royal Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 42
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Royal Stat. Soc. 61(3), 611–622 (1999)
    • (1999) J. Royal Stat. Soc. , vol.61 , Issue.3 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 45
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • Ye, J.: On measuring and correcting the effects of data mining and model selection. J. American Stat. Assoc. 93, 120–131 (1998)
    • (1998) J. American Stat. Assoc. , vol.93 , pp. 120-131
    • Ye, J.1
  • 46
    • 77953553836 scopus 로고    scopus 로고
    • Bayesian learning in sparse graphical factor models via variational mean-field annealing
    • Yoshida, R., West, M.: Bayesian learning in sparse graphical factor models via variational mean-field annealing. J. Mach. Learn. Res. 99, 1771–1798 (2010)
    • (2010) J. Mach. Learn. Res , vol.99 , pp. 1771-1798
    • Yoshida, R.1    West, M.2
  • 47
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the gaussian graphical model
    • Yuan, M., Lin, Y.: Model selection and estimation in the gaussian graphical model. Biometrika 94(1), 19–35 (2007)
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 48
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang, C.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894–942 (2010)
    • (2010) Ann. Stat. , vol.38 , pp. 894-942
    • Zhang, C.1
  • 49
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P., Yu, B.: On model selection consistency of lasso. J. Mach. Learn. Res. 7(2), 2541 (2007)
    • (2007) J. Mach. Learn. Res. , vol.7 , Issue.2 , pp. 2541
    • Zhao, P.1    Yu, B.2
  • 50
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H.: The adaptive lasso and its oracle properties. J. American Stat. Assoc. 101, 1418–1429 (2006)
    • (2006) J. American Stat. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 51
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood models. Ann. Stat. 36(4), 1509 (2008)
    • (2008) Ann. Stat. , vol.36 , Issue.4 , pp. 1509
    • Zou, H.1    Li, R.2
  • 53
    • 34548536008 scopus 로고    scopus 로고
    • On the degrees of freedom of the lasso
    • Zou, H., Hastie, T., Tibshirani, R.: On the degrees of freedom of the lasso. Ann. Stat. 35, 2173–2192 (2007)
    • (2007) Ann. Stat. , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.